SINTESIS PADUAN BARU BAJA OXIDE DISPERSION STRENGTHENED (ODS) FERITIK Fe-Cr-Al-W-Ti-Zr DENGAN DISPERSOID Y2O3 SEBAGAI KANDIDAT MATERIAL CLADDING ELEMEN BAKAR REAKTOR NUKLIR DENGAN METODE MEKANOSINTESIS

Hakimul Wafda(1), Djoko Hadi Prajitno(2), Asrili Pramutadi Andi Mustari(3), Fahma Roswita(4),


(1) 1. Pusat Riset Teknologi Reaktor Nuklir, Badan Riset dan Inovasi Nasional (BRIN) 2. Program Studi Ilmu dan Rekayasa Nuklir, Fakultas MIPA, Institut Teknologi Bandung
(2) Pusat Riset Teknologi Proses Radiasi, Badan Riset dan Inovasi Nasional (BRIN)
(3) Program Studi Ilmu dan Rekayasa Nuklir, Fakultas MIPA, Institut Teknologi Bandung
(4) 1. Pusat Riset Teknologi Reaktor Nuklir, Badan Riset dan Inovasi Nasional (BRIN) 2. Program Studi Ilmu dan Rekayasa Nuklir, Fakultas MIPA, Institut Teknologi Bandung
Corresponding Author

Abstract


Bahan struktur merupakan salah satu kunci penting dalam penelitian reaktor nuklir generasi keempat. Sejak peristiwa kecelakaan di pembangkit listrik tenaga nuklir Fukushima–Daiichi, telah terjadi peningkatan pengembangan Accident Tolerant Fuel (ATF) Cladding atau kelongsong bahan bakar toleran kecelakaan untuk menghindari kecelakaan reaktor air ringan. Maka dari itu Inovasi perekayasaan ATF merupakan salah satu kegiatan dalam litbang material maju yang sedang banyak dikembangkan. Kandidat material yang paling menjanjikan untuk ATF cladding adalah Baja yang diperkuat dengan dispersi oksida (ODS). Dalam penelitian ini baja ODS feritik Fe-Cr-Al-W-Ti-Zr-Y2O3 disintesis dengan metode mekanosintesis menggunakan alat planetary ball mill (PBM) dengan variasi komposisi Zr sebesar 0%, 0.5%, 1%, dan 1.5%. Mekanosintesis dilakukan selama 8 jam dengan menggunakan bola stainless steel. Perbandingan berat antara sampel dengan bola adalah 1:10. Kemudian dilakukan karakterisasi menggunakan mikroskop optik, XRD, dan SEM-EDS. Hasil observasi menunjukkan homogenitas yang baik pada bahan hasil sintesis.

Keywords


Kelongsong; reaktor nuklir; baja ODS; mekanosintesis

References


[1] S. J. Zinkle et al., “Development of Next Generation Tempered and ODS Reduced Activation Ferritic/Martensitic Steels for Fusion Energy Applications.”

[2] G. R. Odette, “On the status and prospects for nanostructured ferritic alloys for nuclear fission and fusion application with emphasis on the underlying science,” Scr Mater, vol. 143, pp. 142–148, Jan. 2018, doi: 10.1016/j.scriptamat.2017.06.021.

[3] B. J. Merrill, S. M. Bragg-Sitton, and P. W. Humrickhouse, “Modification of MELCOR for severe accident analysis of candidate accident tolerant cladding materials,” Nuclear Engineering and Design, vol. 315, pp. 170–178, Apr. 2017, doi: 10.1016/j.nucengdes.2017.02.021.

[4] E. A. Basuki et al., “Isothermal Oxidation Behavior of Ferritic Oxide Dispersion Strengthened Alloy at High Temperatures,” Journal of Engineering and Technological Sciences, vol. 54, no. 2, pp. 370–382, Mar. 2022, doi: 10.5614/j.eng.technol.sci.2022.54.2.10.

[5] H. Wafda, D. H. Prajitno, and V. Trisnawan, “Synthesis of Zr-Nb-Mo-Y-Sn alloys for fuel cladding material for PWR small-medium nuclear reactor,” in AIP Conference Proceedings, American Institute of Physics Inc., Nov. 2021. doi: 10.1063/5.0066918.

[6] Bandriyana, A. Sujatno, R. Salam, B. Sugeng, and A. Dimyati, “High temperature Oxidation of ODS alloy with zirconia dispersions synthesized using Arc Plasma Sintering,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Mar. 2017. doi: 10.1088/1757-899X/176/1/012047.

7] M. Taguchi, H. Sumitomo, R. Ishibashi, and Y. Aono, “Effect of Zirconium Oxide Addition on Mechanical Properties in Ultrafine Grained Ferritic Stainless Steels,” Materials Transactions - MATER TRANS, vol. 49, pp. 1303–1310, Jun. 2008, doi: 10.2320/matertrans.MRA2008036.

[8] M. Lambrecht and L. Malerba, “Positron annihilation spectroscopy on binary Fe–Cr alloys and ferritic/martensitic steels after neutron irradiation,” Acta Materialia - ACTA MATER, vol. 59, pp. 6547–6555, Oct. 2011, doi: 10.1016/j.actamat.2011.06.046.

[9] T. K. Kim et al., “Current Status and Future Prospective of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel (ARROS) Development for Nuclear Reactor System Applications,” Nuclear Engineering and Technology, vol. 48, no. 2, pp. 572–594, 2016, doi: https://doi.org/10.1016/j.net.2015.12.005.

[10] D. T. Hoelzer, “History and Outlook of ODS/NFA Ferritic Alloys for Nuclear Applications.”

[11] H. Zhang et al., “Processing and microstructure characterisation of oxide dispersion strengthened Fe-14Cr-0.4Ti-0.25Y2O3 ferritic steels fabricated by spark plasma sintering,” Journal of Nuclear Materials, vol. 464, pp. 61–68, Apr. 2015, doi: 10.1016/j.jnucmat.2015.04.029.

[12] M. A. Meyers and K. K. Chawla, Mechanical behavior of materials. Cambridge University Press, 2009.

[13] A. García-Junceda, N. Garcia, M. Campos, M. Cartón Cordero, and J. Torralba, “Effect of Zirconium on the Microstructure and Mechanical Properties of an Al‐Alloyed ODS Steel Consolidated by FAHP,” Journal of the American Ceramic Society, vol. 98, Jun. 2015, doi: 10.1111/jace.13691.

[14] L. Toualbi et al., “Assessment of a new fabrication route for Fe–9Cr–1W ODS cladding tubes,” Journal of Nuclear Materials, vol. 428, pp. 47–53, Sep. 2012, doi: 10.1016/j.jnucmat.2011.12.013.

[15] H. Yu et al., “Radiation tolerance of alumina scale formed on FeCrAl ODS ferritic alloy,” Nuclear Materials and Energy, vol. 29, p. 101102, 2021, doi: https://doi.org/10.1016/j.nme.2021.101102.

[16] M. G. Petaccia and J. L. Gervasoni, “Nano-yttria in oxide dispersion strengthened tungsten under alpha particle irradiation,” Nuclear Materials and Energy, vol. 20, p. 100681, 2019, doi: https://doi.org/10.1016/j.nme.2019.100681.

[17] D. Kumar, U. Prakash, V. v Dabhade, K. Laha, and T. Sakthivel, “Influence of Yttria on Oxide Dispersion Strengthened (ODS) Ferritic Steel,” Mater Today Proc, vol. 5, no. 2, Part 1, pp. 3909–3913, 2018, doi: https://doi.org/10.1016/j.matpr.2017.11.646.

[18] K. Verhiest et al., “Advances in the development of corrosion and creep resistant nano-yttria dispersed ferritic/martensitic alloys using the rapid solidification processing technique,” Ceram Int, vol. 40, no. 9, Part A, pp. 14319–14334, 2014, doi: https://doi.org/10.1016/j.ceramint.2014.06.023.

[19] L. Dai, Y. Liu, and Z. Dong, “Size and structure evolution of yttria in ODS ferritic alloy powder during mechanical milling and subsequent annealing,” Powder Technol, vol. 217, pp. 281–287, 2012, doi: https://doi.org/10.1016/j.powtec.2011.10.039.

[20] P. Susila, D. Sturm, M. Heilmaier, B. S. Murty, and V. Subramanya Sarma, “Effect of yttria particle size on the microstructure and compression creep properties of nanostructured oxide dispersion strengthened ferritic (Fe–12Cr–2W–0.5Y2O3) alloy,” Materials Science and Engineering: A, vol. 528, no. 13, pp. 4579–4584, 2011, doi: https://doi.org/10.1016/j.msea.2011.02.078.

[21] J. Ren, L. Yu, Y. Liu, C. Liu, H. Li, and J. Wu, “Effects of Zr addition on strengthening mechanisms of al-alloyed high-Cr ODS steels,” Materials, vol. 11, no. 1, Jan. 2018, doi: 10.3390/ma11010118.

[22] R. Gao, L. L. Xia, T. Zhang, X. P. Wang, Q. F. Fang, and C. S. Liu, “Oxidation resistance in LBE and air and tensile properties of ODS ferritic steels containing Al/Zr elements,” Journal of Nuclear Materials, vol. 455, no. 1, pp. 407–411, 2014, doi: https://doi.org/10.1016/j.jnucmat.2014.07.028.

[23] X. Han et al., “A comparison study of change in hardness and microstructures of a Zr-added FeCrAl ODS steel irradiated with heavy ions,” Materials Science and Engineering: A, vol. 841, p. 143050, 2022, doi: https://doi.org/10.1016/j.msea.2022.143050.

[24] P. Dou, S. Jiang, L. Qiu, and A. Kimura, “Effects of contents of Al, Zr and Ti on oxide particles in Fe–15Cr–2W–0.35Y2O3 ODS steels,” Journal of Nuclear Materials, vol. 531, p. 152025, 2020, doi: https://doi.org/10.1016/j.jnucmat.2020.152025.


Full Text: PDF (Bahasa Indonesia)

DOI: 10.55981/gnd.2023.6856

Copyright (c) 2024 GANENDRA Majalah IPTEK Nuklir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.