THE EFFECT OF THE DC-SPUTTERING PROCESS ON CHANGES IN THE HARDNESS VALUE AND ELEMENTS COMPOSITION OF BIOCOMPATIBLE STAINLESS STEEL 316L MATERIAL
(1) Department of Physics, Faculty of Science and Mathematics, Diponegoro University
(2) Department of Physics, Faculty of Science and Mathematics, Diponegoro University
(3) Research Center for Accelerator Technology, Research Organization for Nuclear Technology
(4) Department of Physics, Faculty of Science and Mathematics, Diponegoro University
Corresponding Author
Abstract
Titanium Dioxide (TiO2) thin films have intriguing optical, photocatalytic, and electrical properties and have been investigated for various applications, including solar cells, biomaterials, corrosion-resistant materials, and gas sensor. In this study, TiO2 thin films were deposited on the surface of 316L Stainless Steel to improve its mechanical properties as an implant material. The deposition method used was DC sputtering with variations in deposition times of 30, 60, 90, 120, and 150 minutes. Vickers hardness test and SEM-EDX characterization were carried out to determine the hardness value, elemental composition, and thickness of the TiO2 thin film formed. Based on these tests, it was discovered that the optimal hardness value of316L stainless Steel material was attained at a deposition period of 90 minutes with a hardness value of 170.10 VHN, and the average thickness of the layer formed was ± 119.02 μm.
Keywords
References
[1] Y. Achermann, P. Kerns, and M. E. Shirtliff, “In vivo infection studies,” in Biomaterials and Medical Device - Associated Infections, Elsevier Inc., 2015, pp. 47–70. doi: 10.1533/9780857097224.1.47.
[2] D. Leni, Gunawarman, Y. Yetri, and J. Affi, “Perilaku titanium murni (CPTi grade 2) terhadap lapisan hydroxyapatite untuk aplikasi medis,” Rang Tekik Journal, vol. 1, no. 1, pp. 27–33, 2018, [Online]. Available: http://joernal.umsb.ac.id/index.php/RANGTEKNIKJOURNAL
[3] D. Leni, Gunawarman, J. Affi, and Y. Yetri, “Laju oksidasi titanium murni (CPTi grade tipe 340) berlapis hydroxyapatite (Ha) yang disinter dalam tungku perlakuan panas,” METAL: Jurnal Sistem Mekanik dan Termal, vol. 03, no. 01, pp. 46–50, 2019.
[4] A. Arjunan, A. Baroutaji, A. S. Praveen, J. Robinson, and C. Wang, “Classification of biomaterial functionality”.
[5] R. E. Smallman and R. J. Bishop, Metalurgi Fisik Modern & Rekayasa Material, 6th ed. Jakarta: Penerbit Erlangga, 2000.
[6] T. H. Priyanto, P. Parikin, and M. Li, “Texture analysis using the neutron diffraction method on the non standardized austenitic steel process by machining, annealing, and rolling,” Makara Journal of Technology, vol. 20, no. 1, p. 19, Apr. 2016, doi: 10.7454/mst.v20i1.3051.
[7] Y. Wang et al., “Effects of temperature on corrosion performances of TiO2/SS316L in supercritical water for hydrogen production,” Int J Hydrogen Energy, vol. 44, no. 46, pp. 25112–25118, Sep. 2019, doi: 10.1016/j.ijhydene.2019.07.012.
[8] Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Materials Science and Engineering R: Reports, vol. 87, pp. 1–57, 2015, doi: 10.1016/j.mser.2014.10.001.
[9] S. S. Giat, Soeharto, D. Ika Rahmawati, and T. Sujitno, “Pengaruh implantasi ion titanium nitrida terhadap sifat mekanik biokompatibel material AISI 316L,” Jurnal Sains Materi Indonesia Indonesian Journal of Materials Science, Edisi Khusus Material untuk Kesehatan, pp. 22–26, 2012.
[10] D. S. R. Krishna, Y. Sun, and Z. Chen, “Magnetron sputtered TiO2 films on a stainless steel substrate: Selective rutile phase formation and its tribological and anti-corrosion performance,” in Thin Solid Films, May 2011, pp. 4860–4864. doi: 10.1016/j.tsf.2011.01.042.
[11] Y. Wang et al., “Comparative study on corrosion characteristics of Al2O3/316L and TiO2/316L stainless steel in supercritical water,” Int J Hydrogen Energy, vol. 42, no. 31, pp. 19836–19842, Aug. 2017, doi: 10.1016/j.ijhydene.2017.06.129.
[1] Y. Achermann, P. Kerns, and M. E. Shirtliff, “In vivo infection studies,” in Biomaterials and Medical Device - Associated Infections, Elsevier Inc., 2015, pp. 47–70. doi: 10.1533/9780857097224.1.47.
[2] D. Leni, Gunawarman, Y. Yetri, and J. Affi, “Perilaku titanium murni (CPTi grade 2) terhadap lapisan hydroxyapatite untuk aplikasi medis,” Rang Tekik Journal, vol. 1, no. 1, pp. 27–33, 2018, [Online]. Available: http://joernal.umsb.ac.id/index.php/RANGTEKNIKJOURNAL
[3] D. Leni, Gunawarman, J. Affi, and Y. Yetri, “Laju oksidasi titanium murni (CPTi grade tipe 340) berlapis hydroxyapatite (Ha) yang disinter dalam tungku perlakuan panas,” METAL: Jurnal Sistem Mekanik dan Termal, vol. 03, no. 01, pp. 46–50, 2019.
[4] A. Arjunan, A. Baroutaji, A. S. Praveen, J. Robinson, and C. Wang, “Classification of biomaterial functionality”.
[5] R. E. Smallman and R. J. Bishop, Metalurgi Fisik Modern & Rekayasa Material, 6th ed. Jakarta: Penerbit Erlangga, 2000.
[6] T. H. Priyanto, P. Parikin, and M. Li, “Texture analysis using the neutron diffraction method on the non standardized austenitic steel process by machining, annealing, and rolling,” Makara Journal of Technology, vol. 20, no. 1, p. 19, Apr. 2016, doi: 10.7454/mst.v20i1.3051.
[7] Y. Wang et al., “Effects of temperature on corrosion performances of TiO2/SS316L in supercritical water for hydrogen production,” Int J Hydrogen Energy, vol. 44, no. 46, pp. 25112–25118, Sep. 2019, doi: 10.1016/j.ijhydene.2019.07.012.
[8] Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Materials Science and Engineering R: Reports, vol. 87, pp. 1–57, 2015, doi: 10.1016/j.mser.2014.10.001.
[9] S. S. Giat, Soeharto, D. Ika Rahmawati, and T. Sujitno, “Pengaruh implantasi ion titanium nitrida terhadap sifat mekanik biokompatibel material AISI 316L,” Jurnal Sains Materi Indonesia Indonesian Journal of Materials Science, Edisi Khusus Material untuk Kesehatan, pp. 22–26, 2012.
[10] D. S. R. Krishna, Y. Sun, and Z. Chen, “Magnetron sputtered TiO2 films on a stainless steel substrate: Selective rutile phase formation and its tribological and anti-corrosion performance,” in Thin Solid Films, May 2011, pp. 4860–4864. doi: 10.1016/j.tsf.2011.01.042.
[11] Y. Wang et al., “Comparative study on corrosion characteristics of Al2O3/316L and TiO2/316L stainless steel in supercritical water,” Int J Hydrogen Energy, vol. 42, no. 31, pp. 19836–19842, Aug. 2017, doi: 10.1016/j.ijhydene.2017.06.129.
[12] W. Andriyanti, H. S. Prama, and D. Priyantoro, “Deposisi lapisan tipis titanium nitrida pada stainless steel 316 menggunakan metode DC sputtering,” Pertemuan dan Presentasi Ilmiah Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir, pp. 155–160, 2017, [Online]. Available: www.batan.go.id/psta
[13] C. Vinodbabu, G. T. Rao, N. B. Reddy, and G. V. Zyryanov, “A review on magnetron sputter coatings,” in AIP Conference Proceedings, American Institute of Physics Inc., Nov. 2020. doi: 10.1063/5.0018142.
[14] W. Andriyanti, F. Nurfiana, A. N. Sari, N. A. Kundari, and I. Aziz, “Synthesis TiO2-Ag thin film by DC sputtering method for dye degradation,” J Phys Conf Ser, vol. 1436, no. 1, p. 012008, Jan. 2020, doi: 10.1088/1742-6596/1436/1/012008.
[15] T. Sanjana, M. A. Sunil, H. Shaik, and K. N. Kumar, “Studies on DC sputtered cuprous oxide thin films for solar cell absorber layers,” Mater Chem Phys, vol. 281, Apr. 2022, doi: 10.1016/j.matchemphys.2022.125922.
[16] M. Ananda Gifari, A. W, A. Haerul, and R. I. M, “Growth of TiN thin film on Al 5083 deposited using dc sputtering technique for improving their hardness and corrosion resistance,” J Phys Conf Ser, vol. 1436, no. 1, p. 012079, Jan. 2020, doi: 10.1088/1742-6596/1436/1/012079.
[17] M. R. Alfaro Cruz, D. Sanchez-Martinez, and L. M. Torres-Martínez, “CuO thin films deposited by DC sputtering and their photocatalytic performance under simulated sunlight,” Mater Res Bull, vol. 122, Feb. 2020, doi: 10.1016/j.materresbull.2019.110678.
[18] Brady, Coatings Technology Handbook, 3rd ed. Boca Raton: CRC Press, 2006.
[19] S. Widodo, “Teknologi pendeposisian film tipis metal dengan metode DC-sputtering,” Seminar Nasional Fisika, pp. 76–81, 2012.
[20] W. Andriyanti, B. Arsyad, Ravendianto, T. Sujitno, Suprapto, and D. Priyantoro, “The effect of the gas mixture ratio on 316L stainless steel biomaterial’s mechanical properties and crystal structure using DC sputtering technique,” Jurnal Sains Materi Indonesia, vol. 21, no. 1, pp. 13–20, 2018.
[21] M. Vickers and C. Oya, “Application News No. i281 Test Conditions.” [Online]. Available: http://www.shimadzu.com/about/trademarks/index.html.
[22] T. Sujitno, W. Andriyanti, Suprapto, V. HR, and D. Priyantoro, “Pelapisan TiN pada biomaterial berbasis logam tipe SS316 menggunakan teknik DC sputtering,” Prosiding Pertemuan dan Presentasi Ilmiah Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir, pp. 35–40, 2017, [Online]. Available: www.batan.go.id/psta
[23] S. Nair, R. Sellamuthu, and R. Saravanan, “Effect of nickel content on hardness and wear rate of surface modified cast aluminum bronze alloy,” Mater Today Proc, vol. 5, pp. 6617–6625, 2018, [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853
[24] T. Sujitno, A. Santoso, Wiryoadi, Sayono, B. Siswanto, and L. S. RM, “Optimasi parameter proses sputtering pada deposisi lapisan tipis titanium nitrida (TiN) pada bahan aluminium,” Prosiding Pertemuan dan Presentasi Ilmiah Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir, pp. 156–164, 2020.
[25] Sulhadi et al., “Fabrikasi Film Tipis ZnO;Ga dengan Metode DC Magnetron Sputtering Pengaruh Daya Plasma dan Suhu Anneling,” 2019.
[26] J. Warsito, “Pengaruh Sputtering TiAIN terhadap kekerasan pahat Karbida Tungsten,” Universitas Sanata Dharma, Yogyakarta, 2008
[27] I. Hafizi, W. Widjijono, and M. H. N. E. Soesatyo, “Penentuan konsentrasi stainless steel 316L dan kobalt kromium remanium GM-800 pada uji GPMT,” Majalah Kedokteran Gigi Indonesia, vol. 2, no. 3, p. 121, Dec. 2016, doi: 10.22146/majkedgiind.11386.
[28] J. W. Hoon, K. Y. Chan, J. Krishnasamy, H. Y. Wong, and T. Y. Tou, “SEM-EDX investigation of magneton sputtered ZnO thin films,” IEEE Xplore, 2011.
DOI: 10.55981/gnd.2023.6834
Copyright (c) 2024 GANENDRA Majalah IPTEK Nuklir
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.