FTIR UNTUK CONTROL REAKSI STOIKIOMETRI PELEBURAN ZIRKON DENGAN NaOH
(1) Pusat Sains dan Teknologi Akselerator, BATAN
(2) Pusat Sains dan Teknologi Akselerator, BATAN
Corresponding Author
Abstract
FTIR UNTUK CONTROL REAKSI STOIKIOMETRI PELEBURAN ZIRKON DENGAN NaOH. Zirkon merupakan sumber utama logam zirkonium berderajat industri yang banyak ditemukan di Provinsi Bangka Belitung atau Provinsi Kalimantan barat. Peleburan zirkon dengan NaOH merupakan proses paling efektif dan murah untuk mengekstraksi zirkonium dari bijih silikat. Untuk memperoleh pemulihan zirkonium yang tinggi dan ramah lingkungan, maka dibutuhkan kontrol reaksi stokiometri dengan rasio mole (ZrSiO4/NaOH) yang tepat. Maka tujuan dari penelitian ini melakukan kontrol reaksi stokiometri peleburan zirkon dengan NaOH menggunakan alat Spektrofotometer Fourier Transform Infra Red ( FTIR). FTIR dipilih karena citranya dapat mengidentifikasi beberapa ikatan silanol (≡Si-OH), siloksan (≡Si-O-Si≡) serta grup air (OH) yang kemungkinan dapat mengikat zirkonium. Pada penelitian ini dilakukan pengamatan citra FTIR terhadap reaksi stokiomeri peleburan zirkon dengan NaOH pada beberapa rasio mole (ZrSiO4/NaOH) sebagai fungsi temperatur. Hasil percobaan penunjukan bahwa, pada reaksi stoikiometri dengan mole ZrSiO4(1)/NaOH(2) dicirikan di puncak 601,79 1/cm merupakan milik senyawaan Na2ZrSiO5 yang muncul di temperature 600 ˚C dan 700 ˚C. Dengan kenaikan temperatur pada 800 ˚C dan 900 ˚C senyawaan Na2ZrSiO5 akan berubah menjadi Na2ZrO3, tetapi phenomena ini tidak terjadi di reaksi stoikiometri mole ZrSiO4(1)/NaOH(4). Walaupun keberadaan Na2ZrSiO5 dalam jumlah kelumit, ternyata masih terdeteksi di puncak 1195 1/cm, pada pelindian dengan reaksi stoikiometri mole ZrSiO4(1)/NaOH(6) dan ZrSiO4(1)/NaOH(8) dengan temperature 600 ˚C dan 700 ˚C
Keywords
References
Daftar Pustaka
[1] Z. Wang, Q. Xu, M. Xu, S. Wang, and J. You, ‘In situ spectroscopic studies of decomposition of ZrSiO4 during alkali fusion process using various hydroxides’, RSC Adv., vol. 5, no. 15, pp. 11658–11666, 2015.
[2] J. Zhang, L. Wang, and D. Jiang, ‘Decomposition process of zircon sand concentrate with CaO-NaOH’, Rare Met., vol. 31, no. 4, pp. 410–414, 2012.
[3] J. C. Ayers, L. Zhang, Y. Luo, and T. J. Peters, ‘Zircon solubility in alkaline aqueous fluids at upper crustal conditions’, Geochim. Cosmochim. Acta, vol. 96, pp. 18–28, 2012.
[4] R. Liu et al., ‘Removal of silicon in acid leaching and flocculation processes during zirconium oxychloride octahydrate production’, Ceram. Int., vol. 40, no. 6, pp. 8801–8808, 2014.
[5] R. K. Biswas, M. A. Habib, A. K. Karmakar, and M. R. Islam, ‘A novel method for processing of Bangladeshi zircon: Part I: Baking, and fusion with NaOH’, Hydrometallurgy, vol. 103, no. 1–4, pp. 124–129, 2010.
[6] C. Yamagata, J. B. Andrade, V. Ussui, N. B. de Lima, and J. O. A. Paschoal, ‘High Purity Zirconia and Silica Powders via Wet Process: Alkali Fusion of Zircon Sand’, Mater. Sci. Forum, vol. 591–593, pp. 771–776, 2009.
[7] R. J. F. Da Silva, A. J. B. Dutra, and J. C. Afonso, ‘Alkali fusion followed by a two-step leaching of a Brazilian zircon concentrate’, Hydrometallurgy, vol. 117–118, pp. 93–100, 2012.
[8] A. Manhique, Z. Kwela, and W. W. Focke, ‘De wet process for the beneficiation of zircon: Optimization of the alkali fusion step’, Ind. Eng. Chem. Res., vol. 42, no. 4, pp. 777–783, 2003.
[9] J. Liu, J. Song, T. Qi, C. Zhang, and J. Qu, ‘Controlling the formation of Na2ZrSiO5 in alkali fusion process for zirconium oxychloride production’, Adv. Powder Technol., vol. 27, no. 1, pp. 1–8, 2016.
[10] Muzakky, ‘Rekam jejak kimia permukaan sio 2 produksi fasilitas teknologi pemurnian zirkonium psta surface chemistry tracking of sio 2 product of psta-zirconium purification technology facility’, J. Iptek Nukl. Ganendra Ganendra J. Nucl. Sci. Technol. Vol. 21 No. 1, Januari 2018 37 - 43, pp. 37–43, 2018.
[11] R. Liu, J. Qu, J. Song, T. Qi, and A. Du, ‘Analysis of water leaching and transition processes in zirconium oxychloride octahydrate production’, Ceram. Int., vol. 40, no. 1 PART B, pp. 1431–1438, 2014.
[12] Y. B. Ryu and M. S. Lee, ‘Infrared spectra and thermal properties of sodium silicate solutions’, J. Korean Inst. Met. Mater., vol. 56, no. 1, pp. 72–78, 2018.
[13] L. Vidal et al., ‘Controlling the reactivity of silicate solutions: A FTIR, Raman and NMR study’, Colloids Surfaces A Physicochem. Eng. Asp., vol. 503, pp. 101–109, 2016.
[14] Y. Y. Zhou, X. xuan Li, and Z. xing Chen, ‘Rapid synthesis of well-ordered mesoporous silica from sodium silicate’, Powder Technol., vol. 226, pp. 239–245, 2012.
[15] Philip.J.L, ‘Infrared analysis of organosilocon caompond: spectra-structure correlation’, 2015.
[16] M. Zhang and E. K. H. Salje, ‘Infrared spectroscopic analysis of zircon: Radiation damage and the metamict state’, J. Phys. Condens. Matter, vol. 13, no. 13, pp. 3057–3071, 2001.
[17] I. Atkinson, M. E. Smith, and M. Zaharescu, ‘Examining correlations between composition, structure and properties in zircon-containing raw glazes’, Ceram. Int., vol. 38, no. 3, pp. 1827–1833, 2012.
[18] S. Ullah and F. Ahmad, ‘Effects of zirconium silicate reinforcement on expandable graphite based intumescent fire retardant coating’, Polym. Degrad. Stab., vol. 103, no. 1, pp. 49–62, 2014.
[19] H. Peng et al., ‘Study on the effect of Fe3+on zircon flotation separation from cassiterite using sodium oleate as collector’, Minerals, vol. 7, no. 7, 2017.
[20] N. Sahai and K. Rosso, ‘Computational molecular basis for improved silica surface complexation models’, Interface Sci. Technol., 2006.
[21] W. Jiang, X. Xu, T. Chen, J. Liu, and X. Zhang, ‘Preparation and chromatic properties of C@ZrSiO4inclusion pigment via non-hydrolytic sol-gel method’, Dye. Pigment., vol. 114, no. C, pp. 55–59, 2015.
[22] J. Varghese, T. Joseph, and M. T. Sebastian, ‘ZrSiO4ceramics for microwave integrated circuit applications’, Mater. Lett., vol. 65, no. 7, pp. 1092–1094, 2011.
[23] L. Peng, W. Qisui, L. Xi, and Z. Chaocan, ‘Investigation of the states of water and OH groups on the surface of silica’, Colloids Surfaces A Physicochem. Eng. Asp., vol. 334, no. 1–3, pp. 112–115, 2009.
[24] Nuryono and Narsito, ‘Effect of Acid Concentration on Characters of Silica Gel Synthesized From Sodium Silicate’, Indones. J. Chem., vol. 5, no. 1, pp. 23–30, 2005.
[25] Z. Yahya, M. M. A. B. Abdullah, K. Hussin, K. N. Ismail, R. A. Razak, and A. V. Sandu, ‘Effect of Solids-To-Liquids, Na2SiO3-To-NaOH and Curing Temperature on the Palm Oil Boiler Ash (Si + Ca) Geopolymerisation System’, Materials (Basel)., vol. 8, no. 5, pp. 2227–2242, 2015.
[26] Y. J. Min, S. M. Hong, S. H. Kim, K. B. Lee, and S. G. Jeon, ‘High-temperature CO2 sorption on Na2 CO3 -impregnated layered double hydroxides’, Korean J. Chem. Eng., vol. 31, no. 9, pp. 1668–1673, 2014.
[27] R. A. Nyquist and R. O. Kagel, ‘Infrared Spectra of Inorganic Compounds, Academic Press’, Inc., New York, London, 1971.
[28] Triyono and Muzakky, ‘Loss of H2O During the leaching reaction of zircon minerals with naoh in furnace’, J. Iptek Nukl. Ganendra Ganendra J. Nucl. Sci. Technol. ., vol. 22, no. 1, pp. 39–46, 2019.
DOI: 10.17146/gnd.2020.23.1.5562
Copyright (c) 2020 GANENDRA Majalah IPTEK Nuklir
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.