Agus Probo Sutejo, Haerul Ahmadi, Tasih Mulyono



The examination of defects in radiographic films necessitates specialized knowledge, as indicated by an expert radiographer (AR) degree, yet the subjectivity of AR in identifying defects is problematic. To overcome this subjectivity, an automatic welding defect identification is needed. This is executed by using Matlab to create artificial neural networks, which is beneficial for users with the graphical user interface (GUI) feature. One of the breakthroughs in the figure extraction into seven feature vector values is the geometric invariant moment theory. This prevents translation, rotation, and scaling from changing the figure's characteristics. Therefore, a welding defect identification system with a geometric invariant moment was created in the digital radiographic film figure to overcome the reading error by AR. The identification system obtained an accuracy rating of 89.9%.

Teks Lengkap:

PDF (English)


  1. T. Kersting, N. Schönartz, L. Oesterlein, and A. Liessem, “High end inspection by filmless radiography on LSAW large diameter pipes,” NDT E Int., vol. 43, no. 3, pp. 206–209, Apr. 2010, doi: 10.1016/j.ndteint.2009.11.004.
  2. Hilmi Trian Setyawan and Suryono, “Uji Resolusi Spasial Pada Perangkat Lunak Computed Radiography Menggunakan Pengolahan Citra Digital,” Youngster Phys. J., vol. 3, pp. 311–316, Oct. 2014.
  3. Muhtadan, “Ekstraksi Ciri Cacat Pengelasan Pada Citra Digital Film Radiografi Menggunakan Geometric Invariant Moment Dan Statistical Texture,” J. Forum Nukl., vol. 3, no. 2, pp. 83–106, Nov. 2009.
  4. Ming-Kuei Hu, “Visual pattern recognition by moment invariants,” IRE Trans. Inf. Theory, vol. 8, no. 2, pp. 179–187, Feb. 1962.
  5. D. Žunić and J. Žunić, “Shape ellipticity from Hu moment invariants,” Appl. Math. Comput., vol. 226, pp. 406–414, Jan. 2014.
  6. Pusdiklat-BATAN, “Sumber Radiasi dan Peralatan Radiografi,” 2016.
  7. R. L. Timings, Fabrication and welding engineering. London[u.a.: Routledge, 2011.
  8. C. S. Lent, Learning to program with MATLAB: building GUI tools. Hoboken, NJ: Wiley, 2013.
  9. O. Marques, Practical Image and Video Processing Using MATLAB®: Marques/Practical Image Processing. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011.
  10. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, vol. 103. New York, NY: Springer New York, 2013.
  11. M. Kuhn and K. Johnson, Applied Predictive Modeling. New York, NY: Springer New York, 2013.
  12. M. F. Achyar, “Pengembangan Sistem Identifikasi Tingkat Kekasaran Permukaan Pada Hasil Proses Mesin Bubut Berbasis Citra Mikroskopis,” STTN-BATAN, 2019.
  13. Rizon, M., Haniza, Y., Puteh, S., Yeon, A., Shakaff, M., Abdul Rahman, S., and Karthigayan, M., “Object Detection using Geometric Invariant Moment,” p. 3, 2006.


  • Saat ini tidak ada refbacks.