ESTIMASI DOSIS 99mTc-PERTEHNETAT DARI GENERATOR 99Mo / 99mTc NON-FISI PADA ANAK-ANAK USIA 1-15 TAHUN UNTUK PROSEDUR DIAGNOSTIK

Lafira Lafira(1), Nur Rahmah Hidayati(2), Syarifatul Ulya(3), Arni Aries(4), Marlina Marlina(5), Ramlan Ramlan(6),


(1) Sriwijaya University
(2) Pusat Riset Teknologi Keselamatan, Metrologi, dan Mutu Nuklir, Organisasi Riset Tenaga Nuklir, Badan Riset dan Inovasi Nasional (BRIN)
(3) Pusat Riset Teknologi Keselamatan, Metrologi, dan Mutu Nuklir, Organisasi Riset Tenaga Nuklir, Badan Riset dan Inovasi Nasional (BRIN)
(4) Pusat Riset Teknologi Radioisotop, Radiofarmaka dan Biodosimetri, Organisasi Riset Tenaga Nuklir, Badan Riset dan Inovasi Nasional (BRIN)
(5) Pusat Riset Teknologi Radioisotop, Radiofarmaka dan Biodosimetri, Organisasi Riset Tenaga Nuklir, Badan Riset dan Inovasi Nasional (BRIN)
(6) Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sriwijaya
Corresponding Author

Abstract


99mTc-pertehnetat berguna untuk pengobatan yang disertai dengan adanya info pemberian dosis ke tubuh manusia. Penelitian ini bertujuan untuk mengetahui estimasi dosis radiofarmaka 99mTc Pertehnetat pada anak-anak usia 1-15 tahun. Metode penelitian ini dilakukan dengan berbasis uji biodistribusi mencit dengan interval waktu 0,5, 1, 3, 5, 24 jam pasca injeksi radiofarmaka. Dari data hasil uji biodistribusi diperoleh %ID/gram organ mencit, dikonversikan ke %ID/gram organ manusia. Setelah itu, hasil perhitungan diinput ke software OLINDA/EXM dengan mengamati perbedaan dosis efektif untuk anak-anak usia 1-15 tahun. Berdasarkan nilai %ID/gram organ manusia masing-masing aktivitas uptake pada interval waktu pasca injeksi dari organ tertinggi dihasilkan yaitu, otot, hati, paru-paru, dan lambung. Hasil perbandingan dosis efektif OLINDA/EXM  menggunakan t hewan dan t manusia dapat diketahui hasil yang diperoleh menghasilkan nilai dosis efektif yang lebih kecil dibandingkan setelah dikonversi ke t manusia. Rata-rata dosis serap dari organ tertinggi pada OLINDA/EXM berada di tiroid, lambung, paru-paru dan. Hasil dosis efektif yang diperoleh untuk usia 1 tahun  1.11 x 10-2, 5 tahun 6.01 x 10-3 , 10 tahun 3.96 x 10-3 dan 15 tahun 2.50 x 10-3 . Oleh sebab itu, besar dosis efektif yang dihasilkan semakin besar terhadap umur pasien yang lebih muda.

Keywords


99mTc-Pertehnetat; Uji Biodistribusi; Dosimetri Internal

References


[1] Aisyah, P. A. Artiani, and J. Rachmadetin, “Radioactive Fission Waste from Molybdenum-99 Production and Proliferation Risks,” IOP Conf. Ser. Earth Environ. Sci., vol. 927, no. 1, 2021, doi: 10.1088/1755-1315/927/1/012041.

[2] M. Vasquez-Arteaga et al., “Dosimetry of radiopharmaceuticals used in adult patients with suspected pulmonary embolism,” Momento, vol. 2021, no. 63, pp. 22–33, 2021, doi: 10.15446/mo.n63.95617.

[3] N. R. Hidayati and B. Hidayat, “Application Of 99m Tc Radioisotope In Diagnostic Procedures And Internal Radiation Dose Estimation,” KnE Energy, vol. 1, no. 1, pp. 1–9, 2016, doi: 10.18502/ken.v1i1.469.

[4] A. Duatti, “Review on 99mTc radiopharmaceuticals with emphasis on new advancements,” Nucl. Med. Biol., vol. 92, pp. 202–216, 2021, doi: 10.1016/j.nucmedbio.2020.05.005.

[5] T. Zawistowski and S. Wronka, “Simulation of 99mo production from 30 MeV electron linear accelerator,” Acta Phys. Pol. A, vol. 139, no. 4, pp. 451–453, 2021, doi: 10.12693/APhysPolA.139.451.

[6] I. N. Islami, R. Hidayati, Nur, A. Wibawa, Teguh, Hafiz, Iswahyudi, I. Daruwati, and N. Subkhi, Moch, “Studi Awal Estimasi Dosis Internal 99mTc-MDP Hasil Produksi PSTNT-Batan pada Manusia untuk Deteksi Metastasis dan Inflamasi Tulang Berbasis Uji Biodistribusi Hewan Model Mencit,” Ganendra J. Nucl. Sci. Technol., vol. 22, pp. 85–93, 2019.

[7] P. H. Liem, H. N. Tran, and T. M. Sembiring, “Design optimization of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production,” Prog. Nucl. Energy, vol. 82, pp. 191–196, 2015, doi: 10.1016/j.pnucene.2014.07.040.

[8] F. J. Kelutur and H. Abdul Holik, “Use of 99m Tc in The Field of Radiofarmation: A Review,” Biomed. J. Indones., vol. 7, no. 1, pp. 1–10, 2021, doi: 10.32539/bji.v7i1.241.

[9] Y. Fujita et al., “Effect on 99Mo-adsorption/99mTc-elution properties of alumina with different surface structures,” J. Radioanal. Nucl. Chem., vol. 327, no. 3, pp. 1355–1363, 2021, doi: 10.1007/s10967-021-07616-z.

[10] Marlina et al., “Surface modification of acid-functionalized mesoporous gamma-alumina for non-fission 99Mo/99mTc generator,” Appl. Radiat. Isot., vol. 187, no. June, p. 110342, 2022, doi: 10.1016/j.apradiso.2022.110342.

[11] I. Saptiama et al., “Synthesis and characterization of mesoporous gamma-alumina by glucose as soft-template for molybdenum-99 adsorption: High and low molar ratio of water to aluminium isopropoxide effect,” IOP Conf. Ser. Earth Environ. Sci., vol. 927, no. 1, 2021, doi: 10.1088/1755-1315/927/1/012005.

[12] J. Jang et al., “A preliminary biodistribution study of [99mTc]sodium pertechnetate prepared from an electron linear accelerator and activated carbon-based 99mTc generator,” Nucl. Med. Biol., vol. 110–111, pp. 1–9, 2022, doi: 10.1016/j.nucmedbio.2022.03.002.

[13] A. Boschi, L. Uccelli, and P. Martini, “A picture of modern Tc-99m radiopharmaceuticals: Production, chemistry, and applications in molecular imaging,” Appl. Sci., vol. 9, no. 12, pp. 1–16, 2019, doi: 10.3390/app9122526.

[14] S. Hasan and M. A. Prelas, “Molybdenum-99 production pathways and the sorbents for 99Mo/99mTc generator systems using (n, γ) 99Mo: a review,” SN Appl. Sci., vol. 2, no. 11, pp. 1–28, 2020, doi: 10.1007/s42452-020-03524-1.

[15] M. Khan and Q. Mahmood, “Technetium-99m Radiopharmaceuticals : A Review on Basic and Applied Aspects,” Nucl., vol. 4, no. 4, pp. 162–170, 2019.

[16] C. C. O. Silva et al., “Preclinical radiation internal dosimetry in the development of new radiopharmaceuticals using GATE Monte Carlo simulation,” Radiat. Phys. Chem., vol. 173, no. August 2019, p. 108879, 2020, doi: 10.1016/j.radphyschem.2020.108879.

[17] M. Sugiharti, R. J., Daruwati, I., Widyasari, E. M., & Christina, “Studi awal biodistribusi nanomateial 186 Re-M41S-NH 2 S 186 Re-M41S-NH2 sebagai radiofarmaka untuk prosedur radiosinovektomi,” J. Iptek Nukl. Ganendra, vol. 22, no. 1, pp. 47–54, 2019, [Online]. Available: https://www.researchgate.net/publication/333108977_BIODISTRIBUSI_NANOMATERIAL_186Re-M41SNH2_SEBAGAI_RADIOFARMAKA_UNTUK_PROSEDUR_RADIOSINOVEKTOMI_PADA_TIKUS_NORMAL_STUDI_PENDAHULUAN

[18] D. Desita, W. S. Budi, and G. Gunawan, “Biodistribusi radiofarmaka Tc 99m DTPA pada pemeriksaan renografi,” Youngster Phys. J., vol. 6, no. 2, pp. 157–165, 2017.

[19] K. Ramonaheng, A. J. Staden, van, and du H. Raan, “Accuracy of two dosimetry software programs for 177Lu radiopharmaceutical therapy using voxel-based patient- specific phantoms,” J. Pre-proof, vol. 8, no. 7, p. 154166, 2022, doi: 10.1016/j.heliyon.2022.e09830. [20] M. G. Stabin, R. B. Sparks, and E. Crowe, “OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine,” J. Nucl. Med., vol. 46, no. 6, pp. 1023–1027, 2005.

[21] M. G. Stabin, Fundamentals of Nuclear Medicine Dosimetry. USA: Springer, 2008. doi: 10.1007/978-0-387-74579-4.

[22] N. R. Hidayati et al., “PENENTUAN RESIDENCE TIME RADIOFARMAKA 99m Tc-MDP MENGGUNAKAN MS-EXCEL , MATLAB DAN OLINDA / EXM UNTUK ESTIMASI DOSIS KE MANUSIA,” Semin. Nas. SDM Teknol. Nukl., pp. 222–227, 2018.

[23] I. Lacerda, de, Batista, Viviane, J. Vieira, Wilson, M. Oliveira, Liane, and F. Lima, Andrade, de, Roberto, “Comparative analysis of the conversion coefficient for internal dosimetry using different phantoms,” Radiat. Phys. Chem., vol. 167, no. May 2019, p. 108351, 2020, doi: 10.1016/j.radphyschem.2019.108351.

[24] M. G. Stabin, “The Practice of Internal Dosimetry in Nuclear Medicine,” in CRC Press, London New York: CRC Press, 2017.

[25] D. Intokiyah, T. H. A. Wibawa, I. Iswahyudi, N. R. Hidayati, I. Daruwati, and Y. S. Perkasa, “Estimasi Dosis Tc-99m Glutation untuk diagnosa Kanker Kepala dan Leher Berdasarkan Uji Biositribusi Hewan Model Mencit,” J. Sains dan Teknol. Nukl. Indones., vol. 20, no. 1, p. 19, 2019, doi: 10.17146/jstni.2019.1.1.4631.

[26] N. R. Hidayati et al., “Studi Awal Estimasi Dosis Internal 177Lu-Dota Trastuzumab pada Manusia Berbasis Uji Biodistribusi pada Mencit,” J. Sains dan Teknol. Nukl. Indones., vol. 16, no. 2, p. 105, 2015, doi: 10.17146/jstni.2015.16.2.2362.

[27] A. Soeriadi, Erwin and A. Utomo, “Prosedur Diagnostik Nuklir pada Anak,” J. Heal. Sains, vol. 2, no. Desember, p. 12, 2021.

[28] F. Cicone, D. Viertl, T. Denoël, M. G. Stabin, J. O. Prior, and S. Gnesin, “Comparison of absorbed dose extrapolation methods for mouse-to-human translation of radiolabelled macromolecules,” EJNMMI Res., vol. 12, no. 1, 2022, doi: 10.1186/s13550-022-00893-z.

[29] D. S. Glazier, “Effects of metabolic level on the body size scaling of metabolic rate in birds and mammals,” Proc. R. Soc. B Biol. Sci., vol. 275, no. 1641, pp. 1405–1410, 2008, doi: 10.1098/rspb.2008.0118.

[30] S. Shanehsazzadeh, A. Lahooti, P. Shirmardi, S, and M. Erfani, “Comparison of estimated human effective dose of 67Ga- and 99mTc-labeled bombesin based on distribution data in mice,” J. Radioanal. Nucl. Chem., vol. 305, no. 2, pp. 513–520, 2015, doi: 10.1007/s10967-015-3995-7.


Full Text: PDF (Bahasa Indonesia)

DOI: 10.55981/gnd.2023.6853

Copyright (c) 2024 GANENDRA Majalah IPTEK Nuklir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.