ARDUINO AND IOT-BASED OBSERVATION METHOD FOR MONITORING TEMPERATURE, HUMIDITY, AND AIR PRESSURE OF ELECTRON BEAM ACCELERATOR’S ROOM

Isti Dian Rachmawati(1), Ismi Putri Mei Linandia(2), Rizky Fajarudin(3), Saefurrochman Saefurrochman(4), Suhadah Rabi'atul Adabiah(5),


(1) 1. Department of Nuclear Engineering and Engineering Physics, Faculty of Engineering, Gadjah Mada University 2. Research Center for Accelerator Technology, National Research and Innovation Agency (BRIN)
(2) Polytechnic Institute of Nuclear Technology
(3) Research Center for Accelerator Technology, National Research and Innovation Agency (BRIN)
(4) Research Center for Accelerator Technology, National Research and Innovation Agency (BRIN)
(5) Research Center for Accelerator Technology, National Research and Innovation Agency (BRIN)
Corresponding Author

Abstract


The monitoring system for temperature, humidity and air pressure in the electron accelerator’s room has been designed. This research is based on operational environmental monitoring procedures in the accelerator room that must be carried out before the accelerator operates. We offer a simple and adaptable monitoring solution for the electron accelerator room. Parameter data can be monitored using a smart device. Operators do not need to go into the accelerator room to carry out environmental monitoring. The proposed system uses Arduino technology and the Internet of Things (IoT). Data acquisition programming was performed using Arduino IDE and ESP8266 NodeMCU as microcontrollers. The microcontroller then transmits temperature, humidity, and pressure data parameters to the cloud server, where they are then displayed on the smart device via the Blynk app. The results show that the system that has been designed is able to read and store parameter readings on the sensors used and the system has been able to make decisions in the form of notifications about whether the Electron Beam Machine is ready or not to be operated.


Keywords


Arduino; IoT; ESP8266 NodeMCU; temperature; humidity; air pressure

References


[1] D. S. Pudjorahardjo, “Aplikasi Mesin Berkas Elektron di Pusat Teknologi Akselerator dan Proses Bahan - BATAN,” in Pertemuan dan Presentasi Ilmiah Teknologi Akselerator dan Aplikasinya, 2006, vol. Edisi Khus, no. Juli, pp. 70–77, [Online]. Available: https://karya.brin.go.id/id/eprint/2919/.

[2] S. Widodo et al., “Policy review on research, development, and applications of particle accelerator in Indonesia,” in AIP Conference Proceedings, 2021, vol. 2381, no. November, p. 020106, doi: 10.1063/5.0066284.

[3] W. Andriyanti, D. Darsono, E. Nuraini, L. Indrayani, and M. Triwiswara, “Aplikasi Teknologi Mesin Berkas Elektron pada Proses Pewarnaan Batik Katun dengan Pewarna Alami Menggunakan Metode Curing,” GANENDRA Maj. IPTEK Nukl., vol. 23, no. 1, p. 39, Jun. 2020, doi: 10.17146/gnd.2020.23.1.5860.

[4] S. Sabharwal, “Electron Beam Irradiation Applications,” in Proceedings of PAC2013, 2013, pp. 745–748, [Online]. Available: https://accelconf.web.cern.ch/pac2013/papers/weyb3.pdf

[5] M. Murdoch et al., “A new proposed validation method for low energy electron beam processing of dry spices,” Innov. Food Sci. Emerg. Technol., vol. 81, no. September, p. 103141, Oct. 2022, doi: 10.1016/j.ifset.2022.103141.

[6] S. Sudiyanto, “Pengujian Awal Sistem Instrumentasi & Kendali Unit Vakum Mesin Berkas Elektron 350 keV/10 mA Tipe Remote Manual,” GANENDRA Maj. IPTEK Nukl., vol. 6, no. 1, pp. 9–14, Jan. 2003, doi: 10.17146/gnd.2003.6.1.198.

[7] T. Abou Elmaaty, S. Okubayashi, H. Elsisi, and S. Abouelenin, “Electron beam irradiation treatment of textiles materials: a review,” J. Polym. Res., vol. 29, no. 4, p. 117, Apr. 2022, doi: 10.1007/s10965-022-02952-4.

[8] Badan Riset dan Inovasi Nasional, “Safety Analysis Report of Electron Beam Machine 300 keV/20 mA,” Yogyakarta, 2021.

[9] L.-D. Liao et al., “Design and Validation of a Multifunctional Android-Based Smart Home Control and Monitoring System,” IEEE Access, vol. 7, pp. 163313–163322, 2019, doi: 10.1109/ACCESS.2019.2950684.

[10] H. K. Kondaveeti, N. K. Kumaravelu, S. D. Vanambathina, S. E. Mathe, and S. Vappangi, “A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations,” Comput. Sci. Rev., vol. 40, p. 100364, May 2021, doi: 10.1016/j.cosrev.2021.100364.

[11] Y. Güven, E. Coşgun, S. Kocaoğlu, H. G. Ezİcİ, and E. Yilmazlar, “Understanding the Concept of Microcontroller Based Systems To Choose The Best Hardware For Applications,” Res. Inven. Int. J. Eng. Sci., vol. 6, no. 9, pp. 38–44, 2017, [Online]. Available: https://www.researchinventy.com/papers/v7i9/F07093844.pdf.

[12] F. Restuccia et al., “ARTe: Providing real-time multitasking to Arduino,” J. Syst. Softw., vol. 186, p. 111185, Apr. 2022, doi: 10.1016/j.jss.2021.111185.

[13] M. R. M. Veeramanickam, B. Venkatesh, L. A. Bewoor, Y. W. Bhowte, K. Moholkar, and J. L. Bangare, “IoT based smart parking model using Arduino UNO with FCFS priority scheduling,” Meas. Sensors, vol. 24, no. October, p. 100524, Dec. 2022, doi: 10.1016/j.measen.2022.100524.

[14] B. K. Mohanta, D. Jena, U. Satapathy, and S. Patnaik, “Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology,” Internet of Things, vol. 11, p. 100227, Sep. 2020, doi: 10.1016/j.iot.2020.100227.

[15] K. Nayanasitachowdary and M. Padmaja, “A Real and Accurate GPS based Environmental Monitoring Robotic System using IoT,” in 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Nov. 2021, pp. 242–247, doi: 10.1109/I-SMAC52330.2021.9640769.

[16] K. Ain et al., “Development of IoT-based weather observers at BMKG (meteorology, climatology and geophysics agency),” in AIP Conference Proceedings, 2020, vol. 2314, no. December, p. 040011, doi: 10.1063/5.0034949.

[17] R. Simanullang, S. Soekirno, and H. A. Larassari, “Design and analysis of air quality monitoring system PM 10 and PM 2.5 integrated with weather parameters (a case study on Margonda Raya street Depok),” J. Phys. Conf. Ser., vol. 1528, no. 1, p. 012053, Apr. 2020, doi: 10.1088/1742-6596/1528/1/012053.

[18] M. A. Omran, B. J. Hamza, and W. K. Saad, “The design and fulfillment of a Smart Home (SH) material powered by the IoT using the Blynk app,” Mater. Today Proc., vol. 60, pp. 1199–1212, 2022, doi: 10.1016/j.matpr.2021.08.038.

[19] R. M. Ramli and W. A. Jabbar, “Design and implementation of solar-powered with IoT-Enabled portable irrigation system,” Internet Things Cyber-Physical Syst., vol. 2, no. August, pp. 212–225, 2022, doi: 10.1016/j.iotcps.2022.12.002.

[20] P. F. Pereira and N. M. M. Ramos, “Low-cost Arduino-based temperature, relative humidity and CO2 sensors - An assessment of their suitability for indoor built environments,” J. Build. Eng., vol. 60, no. March, p. 105151, Nov. 2022, doi: 10.1016/j.jobe.2022.105151

[21] A. Mankotia and A. K. Shukla, “IOT based manhole detection and monitoring system using Arduino,” Mater. Today Proc., vol. 57, pp. 2195–2198, 2022, doi: 10.1016/j.matpr.2021.12.264.

[22] J. Chigwada, F. Mazunga, C. Nyamhere, V. Mazheke, and N. Taruvinga, “Remote poultry management system for small to medium scale producers using IoT,” Sci. African, vol. 18, p. e01398, Nov. 2022, doi: 10.1016/j.sciaf.2022.e01398.

[23] Handson Technology, “Handson Technology User Manual V1.3 ESP8266 NodeMCU WiFi Development Board: Getting Started User Guide.” Handson Technology, pp. 1–24, [Online]. Available: https://handsontec.com/dataspecs/module/esp8266-V13.pdf.

[24] H. Yue, L. Guo, R. Li, H. Asaeda, and Y. Fang, “DataClouds: Enabling Community-Based Data-Centric Services Over the Internet of Things,” IEEE Internet Things J., vol. 1, no. 5, pp. 472–482, Oct. 2014, doi: 10.1109/JIOT.2014.2353629.

[25] Z. Yan-hua, F. Lei, and Y. Zhi, “Optimization of Cloud Database Route Scheduling Based on Combination of Genetic Algorithm and Ant Colony Algorithm,” Procedia Eng., vol. 15, pp. 3341–3345, 2011, doi: 10.1016/j.proeng.2011.08.626.

[26] Electronics Curiosities, “ESP8266 Node MCU board specifications and pins descriptions,” 2021. https://www.electronicscuriosities.com/2021/08/esp8266-node-mcu-board-specifications.html (accessed Feb. 03, 2023).

[27] ArduinoGetStarted.com, “Arduino - Temperature HUmidity Sensor - LCD.” https://arduinogetstarted.com/tutorials/arduino-temperature-humidity-sensor-lcd (accessed Feb. 09, 2023).

[28] P. E. Tham et al., “Sustainable smart photobioreactor for continuous cultivation of microalgae embedded with Internet of Things,” Bioresour. Technol., vol. 346, p. 126558, Feb. 2022, doi: 10.1016/j.biortech.2021.126558.

[29] Prism Specialties, “Is Humidity Bad for Your Electronics?,” 2020. https://www.prismspecialties.com/blog/2020/06/10/is-humidity-bad-for-your-electronics/ (accessed Feb. 10, 2023).


Full Text: PDF

DOI: 10.55981/gnd.2023.6842

Copyright (c) 2024 GANENDRA Majalah IPTEK Nuklir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.