STUDY OF POISSON NOISE REDUCTION ON GAMMA CAMERA IMAGE USING SPATIAL DOMAIN FILTER

Ayu Jati Puspitasari(1), Risky Nurseila Karthika(2), Puspa Ayu Nugrahani(3), Widya Febrianti(4), Nur Rahmah Hidayati(5),


(1) Polytechnic Institute of Nuclear Technology – National Research and Innovation Agency
(2) Polytechnic Institute of Nuclear Technology – National Research and Innovation Agency
(3) Polytechnic Institute of Nuclear Technology – National Research and Innovation Agency
(4) Polytechnic Institute of Nuclear Technology – National Research and Innovation Agency
(5) Research Center for Safety, Metrology, and Nuclear Quality Technology - National Research and Innovation Agency
Corresponding Author

Abstract


A gamma camera image is produced by a gamma camera that detects the gamma radiation emitted by the radioactive substance or radiopharmaceutical injected into the body. The gamma camera image sometimes has noise that can interfere with the diagnosis. This image is commonly affected by a Poisson-type random noise. This research proposes using a spatial domain filter to study Poisson noise reduction in gamma camera images. The image sample used is the image of a mouse injected with Lu-177-DOTA Trastuzumab with 100 µCi activity detected using a dual-head gamma camera with NaI(Tl) detectors. The grayscale image is treated with Poisson noise, then improved using a spatial domain filter. The spatial domain filters used include Mean, Median, Wiener, and Spatial Lowpass Filters. The mean filter is the best one that can reduce Poisson noise among the four applied filters. The best filter size for noise reduction is 3 with MSE 5.07, PSNR 41.08 dB, and SSIM 0.99.


Keywords


gamma camera image; noise reduction; poisson noise; spatial domain filter

References


[1] J. Wheat, G. Currie, R. Davidson, and H. Kiat, “An introduction to nuclear medicine,” Radiographer, vol. 58, no. 3, pp. 38–45, Sep. 2011, doi: 10.1002/J.2051-3909.2011.TB00154.X.

[2] Y. Sasaki and K. Kusakabe, “Nuclear medicine for diagnosis and treatment,” IAEA Off. Public Inf. Commun., vol. 17, no. 1, pp. 7–8, 2017.

[3] D. H. Skuldt, Nuclear medicine. Vienn: International Atomic Energy Agency, 2014.

[4] F. Kharfi, “Principles and Applications of Nuclear Medical Imaging: A Survey on Recent Developments,” Imaging Radioanal. Tech. Interdiscip. Res. - Fundam. Cut. Edge Appl., no. March 2013, 2013, doi: 10.5772/54884.

[5] F. Yang, K. Yang, and C. Yang, “Development and Application of Gamma Camera in the Field of Nuclear Medicine,” Int. J. Sci., vol. 4, no. 07, pp. 21–24, 2018, doi: 10.18483/ijsci.1758.

[6] T. Lewellen, “The Scintillation Camera : Planar and SPECT List of Nuclear Medicine ʻSingle Photonʼ Radionuclides.” Department of Radiology, University of Washington, 2007.

[7] N. B. Smith and A. Webb, Introduction to Medical Imaging, 1st editio. Cambridge, England: Cambridge University Press, 2010.

[8] “NM image quality - Radiology Cafe.” https://www.radiologycafe.com/frcr-physics-notes/molecular-imaging/nm-image-quality/ (accessed Sep. 23, 2022).

[9] F. Makhlouf, H. Besbes, N. Khalifa, C. Ben Amar, and B. Solaiman, “Planar Scintigraphic Images Denoising,” Open J. Med. Imaging, vol. 03, no. 04, pp. 116–124, 2013, doi: 10.4236/ojmi.2013.34019.

[10] M. Avinash Shrivastava, P. Bisen, M. Dubey, and M. Choudhari, “Image Denoising Using Different Filters (A Comparison of Filters),” Int. J. Emerg. Trends Sci. Technol., vol. 02, no. 04, pp. 2214–2219, Accessed: Feb. 16, 2023. [Online]. Available: www.ijetst.in.

[11] K. V Thakur, O. H. Damodare, and A. M. Sapkal, “Poisson Noise Reducing Bilateral Filter,” Procedia Comput. Sci., vol. 79, pp. 861–865, 2016, doi: 10.1016/j.procs.2016.03.087.

[12] I. R. Ansari, “Image Denoising Using Spatial Domain Filters,” International Journal of Advanced Technology in Engineering and Science, vol. 1, no. 02, pp 42-53, 2013.

[13] M. H. Oceandra, “Pengurangan Noise Pada Citra Digital Menggunakan metode Statistik Mean, Median, Kombinasi, dan Rekrusif Filter,” 2013.

[14] P. Li, X. Liu, and H. Xiao, “Quantum Image Weighted Average Filtering in Spatial Domain,” Int. J. Theor. Phys., vol. 56, pp. 1–27, Nov. 2017, doi: 10.1007/s10773-017-3533-1.

[15] B. Yuwono, “Image Smoothing Menggunakan Mean Filtering, Median Filtering, Modus Filtering Dan Gaussian Filtering,” Telematika, vol. 7, no. 1, 2015, doi: 10.31315/telematika.v7i1.416.

[16] K. Purwanto, A. Bejo, and A. Suwastono, “Implementasi Algoritme High Pass Filter pada FPGA menggunakan Sensor NIOS II,” in Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri, 2017, pp. 1–5.

[17] A. P., F. K., and A. Krishnan, “An Overview of Mammogram Noise And Denoising Techniques,” Int. J. Eng. Res. Gen. Sci., vol. 4, no. 2, pp. 557–563, 2016, doi: 10.1109/MPOT.2015.2396533.

[18] J. C. Church, Y. Chen, and S. V. Rice, “A Spatial Median Filter for noise removal in digital images,” Conf. Proc. - IEEE SOUTHEASTCON, no. August, pp. 618–623, 2008, doi: 10.1109/SECON.2008.4494367.

[19] JUD, Pemrograman Python untuk Pemula. CV Jubilee Solusi Enterprise, 2016.

[20] U. Sara, M. Akter, and M. S. Uddin, “Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study,” J. Comput. Commun., vol. 07, no. 03, pp. 8–18, 2019, doi: 10.4236/jcc.2019.73002.

[21] G. Chen, Y. Shen, F. Yao, P. Liu, and Y. Liu, “Region-based moving object detection Using SSIM,” Proc. 2015 4th Int. Conf. Comput. Sci. Netw. Technol. ICCSNT 2015, pp. 1361–1364, Jun. 2016, doi: 10.1109/ICCSNT.2015.7490981.

[22] X. Wang, “A Coiflets-Based Wavelet Laplace Method for Solving the Riccati Differential Equations,” J. Appl. Math., vol. 2014, no. Vim, 2014, doi: 10.1155/2014/257049.

[23] “Image quality and quality control in diagnostic nuclear medicine,” International Atomic Energy Agency, 2021. https://www.iaea.org/resources/rpop/health-professionals/nuclear-medicine/diagnostic-nuclear-medicine/image-quality-and-quality-control#4 (accessed Apr. 26, 2021).

[24] M. Manju, P. Abarna, and S. Yamini, “Peak Signal to Noise Ratio & Mean Square Error calculation for various Images using the lossless Image compression in CCSDS algorithm,” in International Journal of Pure and Applied Mathematics, 2018, vol. 119, no. 12, pp. 14471–14477.

[25] M. Nabih, “Time-Frequency analysis of Different types of signals,” Ain Shams University, 2016.

[26] A. Dixit and S. Majumdar, “COMPARATIVE ANALYSIS OF COIFLET AND DAUBECHIES WAVELETS USING GLOBAL THRESHOLD FOR IMAGE DENOISING,” Int. J. Adv. Eng. Technol., no. November, pp. 2247–2252, 2013.

[27] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004, doi: 10.1109/TIP.2003.819861.

[28] N. R. Hidayati et al., “STUDI AWAL ESTIMASI DOSIS INTERNAL 177Lu-DOTA TRASTUZUMAB PADA MANUSIA BERBASIS UJI BIODISTRIBUSI PADA MENCIT,” urnal Sains dan Teknol. Nukl. Indones., vol. 16, no. 02, pp. 105–116, 2015.

[29] A. K. Moorthy, Z. Wang, and A. C. Bovik, “Visual Perception and Quality Assessment,” in Optical and Digital Image Processing: Fundamentals and Applications, G. Cristobal, P. Schelkens, and H. Thienpont, Eds. New Jersey: John Wiley & Sons, 2011, pp. 419–439.

[30] M. Ali, B. Younes, and A. Jantan, “Image Encryption Using Block-Based Transformation Algorithm,” vol. 8, no. February, pp. 11–18, 2008.

[31] A. Horé and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” Proc. - Int. Conf. Pattern Recognit., pp. 2366–2369, 2010, doi: 10.1109/ICPR.2010.579.

[32] P. Ndajah, H. Kikuchi, M. Yukawa, H. Watanabe, and S. Muramatsu, “SSIM image quality metric for denoised images,” Int. Conf. Vis. Imaging Simul. - Proc., no. November, pp. 53–57, 2010.

[33] A. J. Puspitasari, I. C. Ningsih, M. S. Ridwan, and H. Hamadi, “PLANAR SCINTIGRAPHY IMAGE DE-NOISING USING COIFLET WAVELET,” GANENDRA Maj. IPTEK Nukl., vol. 24, no. 2, pp. 75–83, Nov. 2021, Accessed: Feb. 15, 2023. [Online]. Available: https://jurnal.batan.go.id/index.php/ganendra/article/view/6280.

[34] K. Raju, L. Kumar, M. Kumar, and V. K. .R, “Image Denoising using Filters with Varying Window Sizes: A Study,” Int. J. Curr. Trends Eng. Res., vol. 2, no. 7, pp. 48–53, 2016, [Online]. Available: https://www.researchgate.net/publication/339106209_Image_Denoising_using_Filters_with_Varying_Window_Sizes_A_Study.

[35] “Blurring Images – Image Processing with Python.” https://datacarpentry.org/image-processing/06-blurring/ (accessed Feb. 27, 2023).


Full Text: PDF

DOI: 10.55981/gnd.2023.6822

Copyright (c) 2024 GANENDRA Majalah IPTEK Nuklir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
?>
slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor