EFFECT OF COLLIMATOR ELEMENTS ON THE BEAM SPECTRUM AND KERMA IN GAMMA IRRADIATOR

Rasito Tursinah(1), Bunawas Bunawas(2), Tri Cahyo(3), Ade Suherman(4), P Sukmabuana(5),


(1) Center for Science and Applied Nuclear Technology – BATAN, Jl. Tamansari 71 Bandung, Indonesia
(2) Center for Science and Applied Nuclear Technology – BATAN, Jl. Tamansari 71 Bandung, Indonesia
(3) Center for Science and Applied Nuclear Technology – BATAN, Jl. Tamansari 71 Bandung, Indonesia
(4) 
(5) 
Corresponding Author

Abstract


In the development of low-medium energy photon calibration facilities we have simulated several types of gamma irradiator collimator materials with ISO 4037-1 design connected to the output beam spectrum and the resulting kerma. Four types of collimator material, namely Al, Fe, Pb, and WCu have been simulated with gamma radiation sources 241Am, 57Co, 137Cs, and 60Co. Simulations were carried out using the Monte Carlo method with the PHITS computer program. Based on the comparison of air kerma produced, collimators made from Al are suitable for gamma sources 241Am, Fe material for gamma sources 57Co, and Pb material for sources 137Cs and 60Co.

Keywords


dose; gamma spectra; collimator; Monte Carlo; PHITS

References


[1] S. Taneja, L. J. Bartol, W. S. Culberson, and L. A. DeWerd, “Characterization of the energy spectrum of a 137Cs irradiator through measurements using a pulse-mode detector,” Radiat. Meas., vol. 114, pp. 1–7, 2018.

[2] M. L. Rodríguez, L. Del Risco Reyna, and C. E. De Almeida, “Study of the radiation field characteristics of a 137Cs irradiator by Monte Carlo simulation,” Health Phys., vol. 85, no. 4, pp. 433–437, 2003.

[3] T. Goorley et al., “Initial MCNP6 release overview,” Nucl. Technol., vol. 180, no. 3, pp. 298–315, 2012.

[4] S. Taneja, L. J. Bartol, W. S. Culberson, and L. A. DeWerd, “Air-kerma modulation effects on the energy spectrum of a 137CS irradiator using Monte-Carlo techniques,” Radiat. Meas., vol. 95, pp. 9–15, 2016.

[5] W. S. Bak, S. U. Heo, and B. I. Min, “Benchmarking FLUKA Monte Carlo code with international measurement standard for air kerma,” J. Instrum., vol. 15, no. 12, 2020.

[6] T. Sato et al., “Particle and heavy ion transport code system, PHITS, version 2.52,” J. Nucl. Sci. Technol., vol. 50, no. 9, pp. 913–923, 2013.

[7] International Organization for Standardization, Radiological protection — X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy — Part 1: Radiation characteristics and production. International Standard ISO 4037-. 2019.

[8] M. Kowatari, H. Dombrowski, and S. Neumaier, “Monte Carlo simulations of the photon calibration fields at the underground laboratory of PTB,” Radiat. Prot. Dosimetry, vol. 142, no. 2–4, pp. 125–135, 2010.

[9] H. Dombrowski and S. Neumaier, “Traceability of the PTB low-dose rate photon calibration facility,” Radiat. Prot. Dosimetry, vol. 140, no. 3, pp. 223–233, 2010.

[10] H. Sun et al., “Comparison of Radiation Dose Rates with the Flux to Dose Conversion Factors Recommended in ICRP-74 and ICRP-116,” 2016, pp. 27–29.

[11] K. K. V. and H. Y. A. I. Hossain, N. A. Azmi, M. A. Saeed, M. E. Hoque, “Compton scattering of 662 keV gamma rays by aluminium and copper materials using NaI(Tl) detector,” Int. J. Phys. Sci., vol. 7, no. 4, pp. 544–549, 2012.

[12] L. Bourgois and N. Comte, “Monte Carlo method used to determine scatter fractions for estimating secondary gamma-ray and X-ray photon dose equivalent rates,” Radioprotection, vol. 49, no. 2, pp. 107–113, 2014.

[13] V. Mosorov, G. A. Johansen, R. Maad, and D. Sankowski, “Monte Carlo simulation for multi-channel gamma-ray process tomography,” Meas. Sci. Technol., vol. 22, no. 5, 2011.

[14] S. T. Hoang, S. Yoo, and G. M. Sun, “Experimental validation of the backscattering gamma-ray spectra with the monte carlo code,” Nucl. Eng. Technol., vol. 43, no. 1, pp. 13–18, 2011.

[15] A. F. Bielajew, F. Tessier, and I. El Gamal, “The inverse-square gamma-irradiation anomaly of the nuclear enterprises 2575 large-volume ionisation chamber,” Radiat. Prot. Dosimetry, vol. 167, no. 4, pp. 385–391, 2015.

[16] A. F. Bielajew, “Minimizing the 1/r2 perturbation for ideal fluence detectors in small source γ-irradiation fields,” Phys. Med. Biol., vol. 59, no. 16, pp. 4465–4475, 2014.


Full Text: PDF (Bahasa Indonesia)

DOI: 10.17146/gnd.2021.24.2.6307

Copyright (c) 2021 GANENDRA Majalah IPTEK Nuklir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.