PENERAPAN TEKNIK ANALISIS NUKLIR DALAM MENGKAJI KUALITAS UDARA DI SEKITAR PLTU CILACAP

Sri Murniasih(1), Devi Swasti Prabasiwi(2), Dewi Puspa Ariany(3), Sukirno Sukirno(4),


(1) Pusat Sains dan Teknologi Akselerator - BATAN
(2) Pusat Sains dan Teknologi Akselerator - BATAN
(3) Pusat Sains dan Teknologi Akselerator - BATAN
(4) Pusat Sains dan Teknologi Akselerator - BATAN
Corresponding Author

Abstract


PENERAPAN TEKNIK ANALISIS NUKLIR DALAM MENGKAJI KUALITAS UDARA DI SEKITAR PLTU CILACAP. Kandungan zat berbahaya dalam partikulat udara dapat menimbulkan permasalahan kesehatan bagi masyarakat. Tujuan utama dari penelitian ini adalah mengkaji kualitas udara di daerah sekitar PLTU Adipala Cilacap melalui penilaian konsentrasi zat partikel tersuspensi, kandungan logam berat berbahaya dan metaloid lainnya menggunakan metode AAN, serta mengidentifikasi radionuklida menggunakan metoda spektrometri gamma, yang terkandung dalam PM2.5 dan PM10. Pengambilan sampel dilakukan pada Juli 2018 di tiga lokasi sampling, selama 24 jam secara simultan. Karakteristik konsentrasi rata-rata keseluruhan PM2.5 dan PM10 masing-masing adalah 16,76 μg/m3 dan 37,61 μg/m3. Sekitar 45 % partikel berasal dari fraksi halus (PM2.5) dan 55 % berasal dari fraksi kasar (PM10).  Nilai radioaktivitas dalam PM2.5 dan PM10 yang yang terendah adalah radionuklida Pb-210 berkisar 0,134 µBq/m3 dan tertinggi adalah K-40 mempunyai nilai 6,407 µBq/m3. Berdasarkan Perka BAPETEN Nomor 7 Tahun 2017 dijelaskan bahwa baku tingkat radioaktivitas di lingkungan udara dinyatakan di bawah baku mutu yang diijinkan. Kandungan logam berat (As, Cd, Cr, Cu, Sb dan Zn) dalam sampel PM10 dengan konsentrasi tertinggi adalah seng (0,394 ng/m3) dan terendah adalah kadmium (0,0008 ng/m3). Kandungan logam berat pada sampel PM2.5 teridentifikasi bahwa konsentrasi terkecil adalah Cd (0,0006 ng/m3) dan yang tertinggi adalah Zn (0,223 ng/m3) dengan rerata 0,114 ng/m3. Standar ambang batas rata-rata PM2.5 dan PM10 yang ditetapkan WHO berturut-turut adalah 25 μg/m3 dan 50 μg/m3, hal ini menujukkan logam berat di udara disekitar PLTU Adipala Cilacap dengan jarak sekitar 2 km sampai 3 km masih dalam batas terkendali.

Keywords


Konsentrasi PM2.5 & PM10, Radioaktivitas, logam berat, spektrometri gamma, PLTU, AAN

References


[1] A. A. N. Hidayat, “ESDM_ Kebutuhan Listrik Nasional Naik 6,9 Persen Tiap Tahun - Bisnis Tempo,” Tempo.co, 2019.

[2] KESDM, “RUPTL PT PLN ( PERSERO ) 2018-2027 Kebijakan Ketenagalistrikan,” 2018.

[3] J. Wang, Z. Yang, S. Qin, B. Panchal, Y. Sun, and H. Niu, “Distribution characteristics and migration patterns of hazardous trace elements in coal combustion products of power plants,” Fuel, vol. 256, 2019.

[4] T. Jayasekher, “Aerosols near by a coal fired thermal power plant : Chemical composition and toxic evaluation,” Chemosphere, vol. 75, no. 11, pp. 1525–1530, 2009.

[5] S. Xiaoyan, S. Longyi, Y. Shushen, S. Riying, S. Limei, and C. Shihong, “Trace elements pollution and toxicity of airborne PM10 in a coal industrial city,” Atmos. Pollut. Res., vol. 6, no. 3, pp. 469–475, 2015.

[6] J. Suhana and M. Rashid, “Naturally occurring radionuclides in particulate emission from a coal fi red power plant : A potential contamination ?,” J. Environ. Chem. Eng., vol. 4, no. 4, pp. 4904–4910, 2016.

[7] P. Sri, S. P. Hadi, and H. Setiyo, “Trace elements in fine and coarse particles emitted from coal-fired power plants with different air pollution control systems,” J. Environ. Manage., vol. 250, no. May, pp. 1–9, 2019.

[8] D. D. Lestiani, M. Santosa, K. Kurniawati, N. Adventini, and D. P. D. Atmodjo, “Characteristics of Feed Coal and Particulate Matter in the Vicinity of Coal-fired Power Plant in Cilacap, Central Java, Indonesia,” Procedia Chem., vol. 16, pp. 216–221, 2015.

[9] J. Alberto et al., “Natural Radionuclides , Rare Earths and Heavy Metals Transferred to the Wild Vegetation Covering a Phosphogypsum Stockpile at Barreiro , Portugal,” Water Air Soil Pollut., pp. 228–235, 2017.

[10] F. Amini, B. Farid, M. Reza, and F. Behnam, “Distribution of natural radionuclides and assessment of the associated radiological hazards in the rock and soil samples from a high ‑ level natural radiation area , Northern Iran,” J. Radioanal. Nucl. Chem., vol. 322, no. 3, pp. 2091–2103, 2019.

[11] N. England et al., “What are the Air Quality Standards for PM ?,” 2020. [Online]. Available: https://www3.epa.gov/region1/airquality/pm-aq-standards.html.

[12] Anonim, “Air quality guideline,” Wikipedia, 2020.

[13] Anonim, “Peraturan Pemerintah RI No. 41 Tahun 1999 Tentang Pengendalian Pencemaran Udara,” 1999.

[14] S. Zhou et al., “High-resolution sampling and analysis of ambient particulate matter in the Pearl River Delta region of southern China : source apportionment and health risk implications,” Atmos. Chem. Phys, vol. 18, pp. 2049–2064, 2018.

[15] S. K. Sahu et al., “Partitioning behavior of natural radionuclides during combustion of coal in thermal power plants,” Environ. Forensics, vol. 18, no. 1, pp. 36–43, 2017.

[16] Bapeten, “PerKa Badan Pengawas Tenaga Nuklir No.7 tahun 2017 Tentang Nilai Batas Radioaktivitas Lingkungan,” 2017.

[17] Z. Yanqi and J. Ziying, “Estimation of Po-210 and Pb-210 Emissions from Coal Energy Use in China,” in 7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018), 2018, vol. 163, no. Iceesd, pp. 1576–1581.

[18] X. Wang et al., “Spatiotemporal Characteristics and Health Risk Assessment of Heavy Metals in PM 2.5 in Zhejiang Province,” nternational J. Environ. Res. Public Heal., pp. 1–18, 2018.

[19] C. D. Bray, W. Battye, P. Uttamang, P. Pillai, and V. P. Aneja, “Characterization of Particulate Matter (PM 2.5 and PM 10) Relating to a Coal Power Plant in the Boroughs of Springdale and Cheswick, PA,” Atmosphere (Basel)., vol. 8, pp. 186–198, 2017.

[20] A. Talbi, Y. Kerchich, and R. Kerbachi, “Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers , Algeria,” Environ. Pollut., vol. 232, pp. 252–263, 2018.

[21] Y. Hao, X. Meng, X. Yu, M. Lei, W. Li, and F. Shi, “Characteristics of trace elements in PM 2.5 and PM 10 of Chifeng , northeast China : Insights into spatiotemporal variations and sources,” Atmos. Res., vol. 213, no. April, pp. 550–561, 2018. [22] E. Chianese, “PM 2 . 5 and PM 10 in the urban area of Naples : chemical composition , chemical properties and influence of air masses origin,” J. Atmos. Chem., vol. 76, pp. 151–169, 2019.


Full Text: PDF (Bahasa Indonesia)

DOI: 10.17146/gnd.2020.23.1.5818

Copyright (c) 2020 GANENDRA Majalah IPTEK Nuklir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.