CYLINDRICAL SHELL ANALYSIS OF REACTOR PRESSURE VESSEL FOR RDE
(1) PTKRN-BATAN
Corresponding Author
Abstract
Keywords
References
[1] S. Sudadiyo, T Taryo, T. Setiadipura, A. Nugroho and Krismawan, “Preliminary Design of Reactor Pressure Vessel for RDE”, International Journal of Mechanical Engineering and Technology, vol. 9, no.6, pp. 889-898, 2018.
[2] T. Taryo, Ridwan, G. R. Sunaryo and M. Rachmawati, “The Strategy to Support HTGR Fuels for the 10 MW Indonesia’s Experimental Power Reactor (RDE)”, Urania, vo.24, no.1, pp. 1-16, 2018.
[3] R. Frith and M. Stone, “A Proposed New Pressure Vessel Design Class”, International Journal of Pressure Vessels and Piping, vo.13, pp. 4-11, 2016.
[4] M. E. Scari, A. L. Costa, C. Pereira, C. E. Velasquez and M. A. F. Veloso, “HTR Steady State and Transient Thermal Analyses”, International Journal of Hydrogen Energy, vol.41, pp. 7192–7196, 2016.
[5] J.H. Yoon and B.S. Lee, “Comparison of Applicability of Current Transition Temperature Shift Models to SA533B-1 Reactor Pressure Vessel Steel of Korean Nuclear Reactors”, Nuclear Engineering and Technology, vol.49, pp. 1109–1112, 2017.
[6] Z. Zhang, Y. Dong, F. Li, Z. Zhang, H. Wang, X. Huang, H. Li, B. Liu, X. Wu, H. Wang, X. Diao, H. Zhang and J. Wang, “The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module Demonstration Power Plant: An Engineering and Technological Innovation”, Engineering, vol.2, pp. 112-118, 2016.
[7] Y. Weng, H. Wang, B. Cai, H. Gu and H. Wang, “Flow Mixing and Heat Transfer in Nuclear Reactor Vessel with Direct Vessel Injection”, Applied Thermal Engineering, vol.125, pp. 617-632, 2017.
[8] I. Tavakkoli, M.R. Kianoush, H. Abrishami and X. Han, “Finite Element Modeling of a Nuclear Containment Structure Subjected to High Internal Preesure”, International Journal of Pressure Vessels and Piping, vol. 153, pp. 59-69, 2017.
[9] S. Sudadiyo. “Preliminary Design of RDE Feedwater Pump Impeller”, Tri Dasa Mega, vol.20, no.1, pp. 1–12, 2018.
[10] R.S. Khurmi and J.K. Gupta, Machine Design, 14th Edition, Eurasia Publishing House, 2005.
[11] K. Osakada, “History of Plasticity and Metal Forming Analysis”, Journal of Materials Processing Technology, vol. 210, pp. 1436-1454, 2010.
[12] Y.M. Shabana, A. Elsawaf, H. Khalaf and Y. Khalil, “Stresses Minimization in Functionally Graded Cylinders Using Particle Swarm Optimization Technique”, International Journal of Pressure Vessels and Piping, vol. 154, pp. 1-10, 2017.
[13] J.F. Mao, J.W. Zhu, S.Y. Bao, L.J. Luo and Z.L. Gao, “Creep Deformation and Damage Behaviour of Reactor Pressure Vessel under Core Meltdown Scenario ”, International Journal of Pressure Vessels and Piping, vol. 139, pp. 107-116, 2016.
[14] Y. Zhu, Q. Ma, J. Zhang, W. Tang and Y. Dai, “Opening Reinforcement Design and Buckling of Spherical Shell Subjected to External Pressure”, International Journal of Pressure Vessels and Piping, vol.15, pp. 29-36, 2017.
[15] A. Benslimane, S. Bouzidi and M. Methia, “Displacements and Stresses in Pressurized Thick-Walled FGM Cylinders: Exact and Numerical Solutions”, International Journal of Pressure Vessels and Piping, vol. 168, pp. 219-224, 2018.
[16] ASME. Boiler and Pressure Vessel Code. In: Section III Division 5, New York, 2015.
[17] P. Alvaredo, P. Bruna, D. Crespo and E. Gordo, “Influence of Carbon Content on Microstructure and Properties of a Steel Matrix Cermet”, International Journal of Refractory Metals and Hard Materials, vol. 75, pp. 78-84, 2018.
[18] P. Dzierwa, D. Taler and J. Taler, “Optimum heating of cylindrical pressure vessels”, Forsch Ingenieurwes, vol. 79, pp. 163-173, 2016.
[19] J. Jelwan, M. Chowdhury and G. Pearce, “Creep Life Design Criterion and Its Applications to Pressure Vessel Codes”, Materials Physics and Mechanics, vol. 11, pp. 157-182, 2011.
DOI: 10.17146/gnd.2021.24.1.5191
Copyright (c) 2021 GANENDRA Majalah IPTEK Nuklir
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.