Pengendapan Uranium pada Monasit Bangka sebagai Ammonium Diuranate (ADU) Menggunakan Gas NH3
DOI: http://dx.doi.org/10.55981/eksplorium.2020.5879
Abstract
ABSTRAK Monasit, sebagai produk ikutan penambangan timah, mengandung unsur-unsur logam tanah jarang (LTJ) serta unsur radioaktif seperti uranium (U) dan torium (Th). Penelitian dan pengembangan pengolahan monasit di Pusat Teknologi Bahan Galian Nuklir-Badan Tenaga Nuklir Nasional (PTBGN-BATAN) telah berhasil memisahkan LTJ sebagai senyawa hidroksida dengan recovery 85%. Unsur radioaktif U dan Th masing-masing diperoleh sebagai produk dalam bentuk konsentrat senyawa ammonium diuranate (ADU)/(NH4)2U2O7 dan torium hidroksida (Th(OH)4). Pada penelitian sebelumnya, pemisahan U sebagai ADU pada monasit dilakukan dengan proses pengendapan menggunakan larutan NH4OH. Pada penelitian, U ini akan diendapkan sebagai ADU menggunakan reagen gas NH3 dengan tujuan memperoleh kondisi optimum pengendapan. Umpan pengendapan berupa larutan (U,Th,LTJ) sulfat diperoleh dari proses pengolahan monasit secara basa yaitu dekomposisi menggunakan NaOH, pelarutan parsial menggunakan HCl, dan pelarutan total menggunakan H2SO4. Parameter yang diteliti meliputi pengaruh laju alir gas NH3, temperatur proses, dan waktu kontak terhadap recovery U. Hasil penelitian menunjukkan bahwa pada kondisi statis pH-7, kondisi optimum pengendapan U menggunakan gas NH3 adalah pada laju alir gas NH3 150 ml/menit, temperatur proses 30oC, dan waktu kontak 15 menit dengan recovery pengendapan U 100%, Th 99,97%, dan LTJ 99,93%. Hasil tersebut menunjukkan bahwa unsur U sudah terambil seluruhnya akan tetapi masih bercampur dengan unsur lain yaitu Th dan LTJ, sehingga diperlukan penelitian berikutnya untuk memperoleh U dengan kemurnian yang tinggi pada kondisi pH optimum.
ABSTRACT Monazite, as a by-product of tin mining, contains rare earth elements (REE) and radioactive elements like uranium (U) and thorium (Th). The monazite processing Research and Development at the Center for Nuclear Mineral Technology-National Nuclear Energy Agency (PTBGN-BATAN) has succeeded in separating REE as a hydroxide compound with an 85% recovery. The radioactive elements U and Th are each obtained as a product in the form of concentrated compounds of ammonium diuranate (ADU)/(NH4)2U2O7 and thorium hydroxide (Th(OH)4). In previous studies, the separation of U as ADU in monazite was carried out by the precipitation process using NH4OH solution. In this research, U will be precipitated as an ADU using NH3 gas reagents to obtain precipitation optimum conditions. Precipitation feed in the form of (U, Th, REE) sulfate solution derived from the monazite processing using the alkali or base method, which includes decomposition using NaOH, partial dissolution using HCl, and total dissolution using H2SO4. The parameters studied include the effect of NH3 gas flow rate, process temperature, and contact time on U recovery. The results showed that on the static pH-7 condition, the optimum state of U precipitation using NH3 gas is at NH3 gas flow rate of 150 ml/minutes, processing temperature of 30oC, and 15 minutes contact time with precipitation recovery of U 100%, Th 99.97%, and REE 99.93%. These results indicate that U has been taken entirely but still mixed with other elements, which are Th and REE, so that further research is needed to obtain U with high purity on optimum pH condition.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
[1] S. Manna, S. B. Roy, dan J. B. Joshi, “Study of Crystallization and Morphology of Ammonium Diuranate and Uranium Oxide,” Nuclear Materials., 424, pp. 94–100, 2012.
[2] S. Manna, R. Kumar, dan S. K. Satpati, “Study of the Changes in Composition of Ammonium Diuranate with Progress of Precipitation, and Study of the Properties of Ammonium Diuranate and its Subsequent Products Produced from both Uranyl Nitrate and Uranyl Fluoride Solutions,” Nuclear Engineering and Technology, 49, pp. 541–548, 2017
[3] M. Joyce, "Nuclear Engineering: A Conceptual Introduction to Nuclear Power," Elsevier and Butterworth-Heinemann, pp. 297–305, 2018.
[4] S. H. Farjana, N. Huda, M. A. P. Mahmud, dan C. Lang, “Comparative Life-cycle Assessment of Uranium Extraction Processes,” Cleaner Production, vol. 202, pp. 666–683, 2018.
[5] J. B. S. Neto, E. F. U. de Carvalho, R. H. L. Garcia, A. M. Saliba-silva, H. G. Riella, dan M. Durazzo, “Production of Uranium Tetrafluoride from The Effluent Generated in The Reconversion Via Ammonium Uranyl Carbonate,” Nuclear Engineering and Technology, vol. 49, pp. 1711–1716, 2017.
[6] M. H. Sadeghi, M. Outokesh, dan M. H. Zare, “Progress in Nuclear Energy Production of High Quality Ammonium Uranyl Carbonate from Uranyl Nitrate + Carbonate Precursor Solution,” Progress in Nuclear Energy, vol. 122, 2020.
[7] J. Janov, P. G. Alfredson, dan V. K. Vilkaitis, “The Influence of Precipitation Conditions on the Properties of Ammonium Diuranate and Uranium Dioxide Powders,” Nuclear Materials, vol. 44, pp. 161–174, 1972.
[8] B. N. Murty, P. Balakrishna, R. B. Yadav, dan C. Ganguly, “Influence of Temperature of Precipitation on Agglomeration and Other Powder Characteristics of Ammonium Diuranate,” Power Technology, vol. 115, pp. 167–183, 2001.
[9] I. Hore-Lacy, Production of by Product Uranium and Uranium from Unconventional Resources, Elsevier Ltd, 2016.
[10] G. M. Mudd, “The Future of Yellowcake : A Global Assessment of Uranium Resources and Mining,” Science of Total Environmental, vol. 472, pp. 590–607, 2014.
[11] Y. Zhou, G. Li, L. Xu, J. Liu, Z. Sun, dan W. Shi, “Hydrometallurgy Uranium Recovery from Sandstone-type Uranium Deposit by Acid In-situ Leaching - an Example from the Kujieertai,” Hydrometallurgy, vol. 19, pp. 105-209, 2020.
[12] S. Gabriel, A. Baschwitz, G. Mathonnière, F. Fizaine, dan T. Eleouet, “Building Future Nuclear Power Fleets: The Available Uranium Resources Constraint,” Resources Policy, vol. 38, no. 4, pp. 458–469, 2013.
[13] Z. Zhu, Y. Pranolo, dan C. Y. Cheng, “Separation of Uranium and Thorium from Rare Earths for Rare Earth Production - A Review,” Minerals Engineering, vol. 77, pp. 185–196, 2015.
[14] C. K. Gupta dan N. Krishnamurthy, “Extractive Metallurgy of Rare Earths,” International Materials Reviews, vol. 37, no.1 pp. 197-248, 1992.
[15] S. Tjokroardono, B. Soetopo, dan Ngadenin, “Tinjauan Sumberdaya Monasit di Indonesia sebagai Pendukung Litbang/ Industri Superkonduktor,” Prosiding Seminar IPTEK Nuklir dan Pengelolaan Sumber Daya Tambang, Jakarta, 2002.
[16] R. Prassanti, B. Y. Ani, E. Dewita, dan Sumiarti, “Pengendapan Torium (Th) dari Monasit Bangka Setelah Proses Solvent Impregnated Resin (SIR),” Eksplorium, vol. 40, no. 2, pp. 127–134, 2019.
[17] R. Prassanti, “Digesti Monasit Bangka dengan Asam Sulfat,” Eksplorium, vol. 33, no. 1, pp. 41–54, 2012.
[18] K. Trinopiawan, R. Prassanti, Sumarni, dan R. Pudjianto, “Pemisahan Uranium dari Thorium pada Monasit Dengan Metode Ekstraksi Pelarut Alamine,” Eksplorium, vol. XXXII, no. 155, pp. 47–52, 2011.
[19] R. Prassanti, D. S. Putra, B. P. Kusuma, dan F. W. Nawawi, “Analysis of The Effects of Stirring Condition of Separation of Thorium in the Elution Process of Monazite Partial Solution by Solvent Impregnated Resin Method,” IOP Conference Series: Materials Science and Engineering, vol. 303, no. 1, pp. 1–6, 2018.
[20] F. Riza, H. L. Nuri, E. R. Arief, S. Walujo, R. Witjahjati, “Kajian Proses Pengolahan U Kalan Menjadi Yellow Cake,” Prosiding Seminar Teknoekonomi Iptek Nuklir, Serpong, 2006.
[21] A. Kumari, S. Jha, J. Narayan, S. Chakravarty, dan M. Kumar, “Processing of Monazite Leach Liquor for The Recovery of Light Rare Earth Metals (LREMs),” Minerals Engineering, vol. 129, pp. 9–14, 2018.
[22] M. I. N. Said, M. Anggraini, M. Z. Mubarok, dan K. S. Widana, “Studi Ekstraksi Bijih Thorit dengan Metode Digesti Asam dan Pemisahan Thorium dari Logam Tanah Jarang dengan Metode Oksidasi-Presipitasi Selektif,” Eksplorium, vol. 38, no. 2, p. 109, 2018.
[23] H. L. Nuri, R. Faizal, W. Sugeng, S. Budi, dan S. Arif, “Pengolahan Monasit dari Limbah Penambangan Timah : Pemisahan Logam Tanah Jarang (RE) dari U Dan Th,” Prosiding Presentasi Ilmiah Daur Bahan Bakar Nuklir V, pp. 54–60, 2000.
Refbacks
- There are currently no refbacks.
Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)
National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.