Aktivitas NORM pada Sedimen Dasar di Perairan PLTU Tanjung Jati Jepara dan Kaitannya dengan Ukuran Butir Sedimen serta TOC

Navila Bidasari Alviandini, Muslim Muslim, Wahyu Retno Prihatiningsih, Sri Yulina Wulandari

DOI: http://dx.doi.org/10.55981/eksplorium.2019.5662

Abstract


ABSTRAK

NORM (Naturally Occuring Radioactive Material) merupakan unsur radionuklida yang secara alami sudah ada dalam bumi dan kandungannya dapat meningkat dengan adanya kegiatan industri, seperti PLTU. Kegiatan PLTU menghasilkan bottom ash dan fly ash yang akan terbawa oleh angin kemudian masuk ke perairan dan mengendap pada sedimen dasar perairan. Penelitian ini bertujuan untuk mengetahui aktivitas NORM pada sedimen dasar terkait kegiatan PLTU Tanjung Jati, Jepara dan hubungannya dengan ukuran butir serta TOC (Total Organic Carbon). Pengambilan sampel dilakukan dengan metode purposive sampling. Pengukuran konsentrasi aktivitas NORM dilakukan menggunakan spektrometri sinar gama detektor HPGe, di Laboratorium Radioekologi Kelautan PTKMR-BATAN. Konsentrasi aktivitas NORM yang terdeteksi yaitu 40K berkisar 442,75–818,40 Bq.Kg-1, 232Th berkisar 99,19–212,34 Bq.Kg-1 dan 226Ra berkisar 42,42–77,77 Bq.Kg-1. Aktivitas NORM menunjukkan adanya hubungan dengan tekstur sedimen, tetapi tidak menunjukkan hubungan dengan kandungan Total Organic Carbon (TOC).

ABSTRACT

NORM (Naturally Occurring Radioactive Material) is a radionuclide element which naturally exists in the earth and its content can increased with the presence of industrial activities, such as the PLTU. The PLTU activities produce fly ash and bottom ash which will be carried away by the wind and then fall in the waters and settle on the bottom sediments of the waters. This study was aimed to determine the activity of NORM in bottom sediments related activities PLTU Tanjung Jati Jepara and its relationship with grain size and TOC (Total Organic Carbon). Sampling was conducted by purposive sampling method. NORM activity concentration measurements performed using gamma ray spectrometry HPGe detector, in Marine Radioecology Laboratory PTKMR-BATAN. NORM activity concentration detected is 40K ranged 442.75 to 818.40 Bq.Kg-1, 232Th ranged 99.19 to 212.34 Bq.Kg-1 and 226Ra ranged 42.42 to 77.77 Bq.Kg-1. NORM activity shows the relationship with sediment texture, but does not show a relationship with the composition of Total Organic Carbon (TOC).


Keywords


aktivitas NORM; sedimen dasar; perairan PLTU; Total Organic Carbon (TOC)

References


[1] Cahyadi, PLTU Batu Bara Super kritikal yang Efisien (1st ed.). Tangerang Selatan, Banten, Balai Besar Teknologi Energi (B2TE), BPPT, 2015.

[2] T. Juliandhy, T. Haryono dan Suharyanto., “Efek Kegagalan Alat Flue Gas Desulphur Terhadap Tegangan Lewat Denyar Isolator,” JNTETI. 3(2):142–145, 2014.

[3] B. Ozden, E. Guler, T. Vaasma, M. Horvath and M. Kiisk, “Enrichment of Naturally Occurring Radionuclides and Trace Elements in Yatagan and Yenikoy Coal-Fired Thermal Power Plants, Turkey”, Journal of Environmental, 188: 100-107, 2017.

[4] Y. M. Amin, M. U. Khandaker, A. K. S. Shyen, R. H. Mahat, R. M. Nor and D. A. Bradley, “Radionuclide Emissions From a Coal-Fired Power Plant,” Applied Radiation and Isotopes. 80:109–116, 2013.

[5] J. Vives, M. Aoyama, C. Bradshaw, J. Brown, K. O. Buesseler, N. Casacuberta and J. Nishikawa, “Science of the Total Environment Marine Radioecology After the Fukushima Dai-Ichi Nuclear Accident : Are We Better Positioned To Understand The Impact Of Radionuclides In Marine Ecosystems ?” Science of the Total Environment, 618:80–92, 2018.

[6] M. I. Ojovan, and W. E. Lee, “Nuclear Decay”, In An Introduction to Nuclear Waste Immobilisation, p: 7–19, 2014.

[7] N. H. Anggraini, D. Iskandar dan M. Stefanus, “Studi Peningkatan Radionuklida Alam Karena Lepasan Abu Terbang di Sekitar PLTU Labuan,” Sains dan Teknologi Nuklir Indonesia 19(1): 29–40, 2018.

[8] F. M. G. Carvalho, D. da C. Lauria, F. Ribeiro, R. T. Fonseca, S. da S. Peres and N. S. F. Martins, “Natural and Man-Made Radionuclides in Sediments of An Inlet in Rio de Janeiro State, Brazil”. Marine Pollution Bulletin. 107(1):269–276, 2016.

[9] H. Suseno, and W. R. Prihatiningsih, “Monitoring137Cs and134Cs at marine coasts in Indonesia between 2011 and 2013,” Marine Pollution Bulletin, 88(1-2), 319–324, 2014. http://doi.org/10.1016/j.marpolbul.2014.08.024.

[10] H. Suseno, I. B. Wahono, and M. Muslim, “Radiocesium monitoring in Indonesian waters of the Indian Ocean after the Fukushima nuclear accident,” Marine Pollution Bulletin, 97(1-2), 539–543, 2015.

http://doi.org/10.1016/j.marpolbul.2015.05.015.

[11] H. Suseno, I. B. Wahono, M. Muslim, and M. N. Yahya, “Status of 137Cs concentrations in sea water at the inlets of the Indonesian Through Flow (ITF),” Regional Studies in Marine Science, 10, 81–85, 2017.

http://doi.org/10.1016/j.rsma.2016.12.008.

[12] W. R. Prihatiningsih, dan H. Suseno, “Status Konsentrasi 232 Th dan 226 Ra dalam Sedimen Pesisir Pulau Bangka”, Jurnal Teknologi Pengelolaaan Limbah. 15(2):65–70, 2012.

[13] H. Bem, P. Wieczorkowski and M. Budzanowski, “Evaluation of Technologically Enhanced Natural Radiation Near the Coal-Fired Power Plants in the Lodz Region of Poland,” Journal Of Environmental Radioactivity. 61:191–201, 2002.

[14] S. K. Sahu, M. Tiwari, R. C. Bhangare and G. G. Pandit, “Enrichment and Particle Size Dependence of Polonium and Other Naturally Occurring Radionuclides in Coal Ash,” Journal of Environmental Radioactivity. 138:421–426, 2014.

[15] Y. A. S. Putra, D. P. Sasongko, Z. Arifin dan Sukirno, “Distribusi Radionuklida Alam dalam Sampel Lingkungan Tanah, Air dan Tanaman Sekitar PLTU Rembang,” Youngster Physics Journal, 6(4):2–9, 2017.

[16] Priyono, Metode Penelitian Kuantitatif. (1st ed.). Sidoarjo: Zifatama Publishing, 2016.

[17] J. Liu, H. Wei, K. Zhang and G. Pang, “Robust Stabilisation for Constrained Discrete-Time Switched Positive Linear Systems with Uncertainties,” IET Control Theory & Applications, 9(17):2598–2605, 2015.

[18] J. Meng, P. Yao, Z. Yu, T. S. Bianchi, B. Zhao, H. Pan and D. Li, “Speciation, Bioavailability and Preservation of Phosphorus in Surface Sediments of the Changjiang Estuary and Adjacent East China Sea Inner Shelf,” Estuarine, Coastal and Shelf Science. 144:27–38, 2014.

[19] T. Budiwati, A. Budiyono, W. Setyawati dan A. Indrawati, “Analisis Korelasi Pearson Untuk Unsur-Unsur Kimia Air Hujan di Bandung,” Jurnal Sains Dirgantara, 7 (2) :110-112, 2010.

[20] A. Al-Sayed, “Principal Component Analysis within Nuclear Structure”. Nuclear Physics A 933:154–64, 2015.

[21] C.S. Kaliprasad, and Y. Narayana, “Mineralogy and Physico-Chemical Parameters on the Behavior of Natural Radionuclides in the Riverine Environs of Hemavathi, South India,” Radiation Physics and Chemistry. 151: 99-107, 2018.

[22] J. Peterson, M. Macdonell, L. Haroun and F. Monette, “Radiological and Chemical Fact Sheets to Support Risk Analysis Contaminated Areas,” Argonne National Labolatory Environmental Science Division . U.S. departement of Energy, 2007.

[23] R. Ravinsankar, J. Chandramohan, A. Chandrasekaran, J. P. P. Jebakumar, I. Vijayalakshmi, P. Vijayagopal and Venkatraman, “Assessments of Radioactivity Concentration of Natural Radionuclides and Radiological Hazard Indices in Sediment Sampels From the East Coast of Tamilnadu, India With Statistical Approach,” Marine Pollution Bulletin, 97 (1-2): 419-430, 2015`.

[24] A. H. Syaher, Muslim dan M. Makmur, “Analisis Kandungan Radionuklida 40K pada Sedimen di Perairan Pulau Tikus, Bengkulu,” Journal of Oceanography 4(2): 579-584, 2015.

[25] BAPETEN, “Peraturan mengenai Keselamatan Radiasi Dalam Penyimpanan Technologically Enhanced Naturally Occurring Radioactive Material”. Jakarta: Badan Pengawas Tenaga Nuklir, 2013.

[26] B. Zaman, A. Taftazani, R. Pasca, dan S. Retnaningrum, “Studi analisis dan pola persebaran radioaktivitas perairan dan sedimen (studi kasus: sungai code yogyakarta ),” Teknik Keairan, 13(4), 215–225, 2007.

[27] M. W. Yii, A. Zaharudin, and M. Norfaizal, "Concentration of radiocaesium 137Cs and 134Cs in sediments of the Malaysian marine environment,". Applied Radiation and Isotopes, 65(12), 1389–1395, 2007.

http://doi.org/10.1016/j.apradiso.2007.07.002.

[28] M. Dowdall, and A. Lepland, “Elevated Levels of Radium-226 and Radium-228 in Marine Sediments of the Norwegian Trench (“ Norskrenna”) and Skagerrak,” Marine Pollution Bulletin, 64(10):2069–2076, 2012.

[29] H. I. El-reefy, T. Sharshar, R. Zaghloul, dan H. M. Badran, “Distribution of Gamma-Ray Emitting Radionuclides in the Environment of Burullus Lake : I. Soils and Vegetations,“ J Environ Radioact, 87(2): 148–69, 2006.

[30] C. S. Kaliprasad, and Y. Narayana, “Mineralogy and Physico-Chemical Parameters on the Behavior of Natural Radionuclides in the Riverine Environs of Hemavathi, South India,” Radiation Physics and Chemistry. 151: 99-107, 2018.

[31] S. Trianne, A. Satriadi dan L. Maslukah, “Analisis Sebaran Sedimen Dasar di Perairan Tolitoli Sulawesi Tengah,” Jurnal Oseanografi, 6: 633-638, 2017.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.