Studi Fasa dan Sifat Termal Lantanum Oksida Berbasis Monasit

Sari Hasnah Dewi, Wisnu Ari Adi, Suyanti Suyanti

DOI: http://dx.doi.org/10.55981/eksplorium.2019.5646

Abstract


ABSTRAK

Potensi logam tanah jarang (LTJ) di Indonesia sangat besar, terutama yang berasal dari mineral monasit. Monasit merupakan gabungan unsur LTJ-U/Th-fosfat yang berkaitan dengan endapan timah dan unsur-unsur radioaktif. Melalui program BATAN incorporated mineral monasit diolah menjadi bahan yang lebih benilai jual secara ekonomi. Lantanum (La) adalah logam yang termasuk dalam kelompok logam tanah jarang yang memiliki sifat-sifat unggul sebagai pigmen dan sebagai penyerap gelombang elektromagnetik. Tujuan penelitian ini adalah memperoleh informasi pengaruh pemanasan tinggi terhadap produk pilot plant pengolahan logam tanah jarang hidroksida (RE(OH)3) dari monasit, khususnya produk La2(C2O4)3 untuk pembuatan Certified Reference Material (CRM) La2O3. Bahan yang telah ditimbang dikalsinasi pada combustion boat dengan menggunakan furnace pada suhu pemanasan 1.000 OC dan 1.300 OC. Dekomposisi termal dianalisis dengan menggunakan Thermogravimetric analysis (TGA). Formasi fasa bahan dianalisis dengan menggunakan teknik X-Ray Diffraction (XRD). Hasil analisis XRD menunjukkan hasil akhir fasa bahan berubah menjadi La2O3 sebesar 28,76% dan La(OH)3 sebesar 71,24%.

ABSTRACT

Rare earth elements (REE) in Indonesia have great potency, mainly from monazite mineral. Monazite is a combination of REE-U/Th-phosphate elements which is associated with tin deposit and radioactive elements. Through BATAN incorporated program, monazite mineral is processed to become more economically valuable materials. Lanthanum (La) is a metal element, part of REE group, which has excellent properties for pigment and electromagnetic absorber. The purpose of this study is to obtain information related to the effect of calcination in high temperature on the product of monazite’s REE hydroxide (RE(OH)3) processing pilot plant, specific on La2(C4O4)3 for Certified Reference Material (CRM) La­2O3 making. The weighed material is calcined on combustion boat by using a furnace at heating temperature of 1,000 OC and 1,300 OC. Thermal decomposition is analyzed by using Thermogravimetric analysis (TGA). Material phase formation is analyzed by using X-Ray Diffraction (XRD) method. XRD analysis shows the material in final phase has been transform to 28.76 % La2O3 and 71.24 % La(OH)3.


Keywords


monasit; La2O3; fasa; sifat termal

References


[1] I. Hastiawan, F. Firmansyah, Juliandri, D. R. Eddy, dan A. R. Noviyanti, “Pemisahan Lanthanum dari Limbah Hasil Pengolahan Timah dengan Menggunakan Metode Pengendapan Bertingkat”, Chim. Nat. Acta, vol. 4, no. 2, pp. 93–96, 2016.

[2] S. Tjokrokardono, B. Soetopo, dan Ngadenin, “Tinjauan Sumberdaya Monasit di Indonesia Sebagai Pendukung Litbang/Industri Superkonduktor”, Seminar Iptek Nuklir dan Pengelolaan Sumber Daya Tambang, pp. 206–2012, 2002.

[3] I. Rodliyah, S. Rochani, and T. Wahyudi, “Extraction of Rare Earth Metals from Monazite Mineral Using Acid Method”, Indones. Min. J., vol. 18, no. 1, pp. 39–45, 2015.

[4] D. Aditiasari, “Saingi China, RI Mau Produksi Logam ‘Tanah Jarang,” DetikFinance, 2019, [Online]. Tersedia: https://finance.detik.com/industri/d-4653350/saingi-china-ri-mau-produksi-logam-tanah-jarang.

[5] C. A. Morais and V. S. T. Ciminelli, “Process Development for the Recovery of High-grade Lanthanum by Solvent Extraction”, Hydrometallurgy, vol. 73, pp. 237–244, 2004.

[6] C. N. A. C. Z. Bahri, W. Areqi, A. A. Majid, and M. I. F. M. Ruf, “Production of Rare Earth Elements from Malaysian Monazite by Selective Precipitation”, Malaysian J. Anal. Sci., vol. 20, no. 1, pp. 44–50, 2016.

[7] N. N. Soe, L. T. Shwe, and K. T. Lwin, “Study on Extraction of Lanthanum Oxide from Monazite Concentrate”, Int. J. Mater. Metall. Eng., vol. 2, no. 10, pp. 226–229, 2008.

[8] Suyanti dan M.V. Purwani, “Kalsinasi Konsentrat Serium Menjadi Serium Oksida”, Penelitian dan Pengelolaan Perangkat Nuklir, Surakarta, 2016.

[9] Suyanti dan M.V. Purwani, “Pembuatan Konsentrat Neodimium dari Logam Tanah Jarang Hidroksida (REOH) Melalui Dijesti Ulang”, Prosiding Seminar Nasional Teknologi Energi Nuklir 2016, Batam, 2016.

[10] Mashadi, Yunasfi, and A. Mulyawan, “Microwave Absorption Study of Manganese Ferrite in X-band Range Prepared by Solid State Reaction Method”, J. Teknol., vol. 80, no. 2, pp. 147–151, 2018.

[11] W. A. Adi and A. Manaf, “Microstructure and Phase Analysis of La0.8Ba0.2TixMn(1-x)O3 System for Microwave Absorber Material (x = 0–0.7)”, Adv. Mater. Res., vol. 789, pp. 97–100, 2013.

[12] S. Kim, W. Han, S. Kang, M. Han, and Y. Cheong, “Formation of Lanthanum Hydroxide and Oxide Via Precipitation”, Solid State Phenom., vol. 135, no. 3, pp. 23–26, 2008.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.