Spektroskopi Reflektansi Sampel Tanah dan Batuan yang Mengandung Mineral Pembawa Unsur Tanah Jarang dan Radioaktif

Arie Naftali Hawu Hede, Muhammad Anugrah Firdaus, Yogi La Ode Prianata, Mohamad Nur Heriawan, Syafrizal Syafrizal, Heri Syaeful, Ichwan Azwardi Lubis

DOI: http://dx.doi.org/10.55981/eksplorium.2019.5644

Abstract


ABSTRAK

Spektroskopi reflektansi merupakan salah satu metode nondestruktif untuk identifikasi mineral dan sebagai dasar dalam analisis pengindraan jauh (indraja) sensor optik. Penelitian ini bertujuan melakukan kajian penerapan spektroskopi reflektansi pada panjang gelombang 350–2.500 nm untuk sampel tanah dan batuan pembawa unsur tanah jarang (rare earth element-REE) dan radioaktif. Sampel diambil dari beberapa lokasi di Bangka Selatan dan Mamuju yang sebelumnya telah diidentifikasi memiliki potensi REE dan unsur radioaktif. Kurva reflektansi hasil analisis sampel dari Bangka Selatan menunjukan adanya kenampakan absorpsi yang menjadi karakteristik untuk kehadiran REE, dalam bentuk mineral monasit, zirkon, dan xenotime khususnya pada sampel yang berasal dari material tailing dan konsentrat bijih timah. Panjang gelombang yang menjadi kunci khususnya berada pada rentang visible-near infrared (VNIR; 400–1.300 nm). Sedangkan untuk sampel yang berasal dari Mamuju, yang merupakan daerah prospeksi mineral radioaktif, karakteristik spektral memperlihatkan beberapa panjang gelombang kunci terutama pada rentang shortwave infrared (1.300–2.500 nm). Hasil interpretasi menunjukkan mineral mayor berupa mineral lempung, sulfat, spesies NH4, dan mineral yang mengandung Al-OH lainnya, sedangkan untuk beberapa sampel pada panjang gelombang VNIR diidentifikasi mengandung mineral besi oksida/hidroksida. Hasil penelitian ini diharapkan dapat berguna untuk pemetaan eksplorasi REE dan radioaktif dengan menggunakan metode indraja.

ABSTRACT

Reflectance spectroscopy is one of the nondestructive methods of mineral identification and is one of the basic principles in the remote sensing analysis using optical sensors. This research aimed at applying reflectance spectroscopy at 350–2,500 nm wavelength range for samples containing rare earth elements (REE) and radioactive minerals. Samples were taken from several locations in South Bangka and Mamuju that had previously been identified as potential location of REE and radioactive-bearing minerals. Reflectance data shows that there are absorption characteristics for REE-bearing minerals; monazite, zircon, and xenotime minerals especially from tailings and tin ore concentrate for the samples from South Bangka. The key wavelengths are specifically in the visible-near infrared range (VNIR; 400–1300 nm). For the samples from Mamuju, which is known as radioactive mineral prospecting areas, spectral characteristics provide information that there are spectral signatures in the shortwave infrared range (1,300–2,500 nm). The results of major mineral interpretations include clay minerals, sulfates, NH4 species, and other minerals containing Al-OH. However, some samples at the VNIR wavelength identified as iron oxide/hydroxide minerals. It is hoped that these results can be useful for REE and radioactive exploration mapping using remote sensing methods.


Keywords


spektroskopi reflektansi; mineral; unsur tanah jarang; radioaktif

References


[1] A. B. Pour, M. Hashim, and J. van Genderen, “Detection of hydrothermal alteration zones in a tropical region using satellite remote sensing data: Bau goldfield, Sarawak, Malaysia,” Ore Geol. Rev., vol. 54, pp. 181–196, 2013.

[2] F. F. Sabins, “Remote sensing for mineral exploration,” Ore Geol. Rev., vol. 14, pp. 157–183, 1999.

[3] F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, and T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Int. J. Appl. Earth Obs. Geoinf., vol. 14, no. 1, pp. 112–128, 2012.

[4] J. C. Mars and L. C. Rowan, “Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals,” Remote Sens. Environ., vol. 114, no. 9, pp. 2011–2025, 2010.

[5] I. Purwadi, H. van der Werff, and C. Lievens, “Reflectance spectroscopy and geochemical analysis of rare earth element-bearing tailings: A case study of two abandoned tin mine sites in Bangka Island, Indonesia,” Int. J. Appl. Earth Obs. Geoinf., vol. 74, pp. 239–247, 2019.

[6] L. E. Vicente and C. R. de Souza Filho, “Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data,” Remote Sens. Environ., vol. 115, no. 8, pp. 1824–1836, 2011.

[7] P. Hauff, “An overview of VIS-NIR-SWIR field spectroscopy as applied to precious metals exploration,” Arvada, Color. Spectr. Int. Inc, vol. 80001, pp. 303–403, 2008.

[8] G. R. Hunt, “Spectral signatures of particulate minerals in the visible and near infrared,” Geophysics, vol. 42, no. 3, pp. 501–513, Apr. 1977.

[9] R. N. Clark, T. V. V King, M. Klejwa, G. A. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” J. Geophys. Res. Solid Earth, vol. 95, no. B8, pp. 12653–12680, Aug. 1990.

[10] P. E. Johnson, M. O. Smith, and J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. Planets, vol. 97, no. E2, pp. 2649–2657, Feb. 1992.

[11] S. Lolon and F. Rahman, “Overview of rare earth elements in Indonesia,” Coal Asia, 2014.

[12] B. Soetopo, R. Witjahyati, and Y. Wusana, “Sintesa geologi dan pemineralan uranium Sektor Rabau Hulu, Kalan, Kalimantan Barat,” in Seminar Geologi Nuklir dan Sumberdaya Tambang Tahun 2004, 2004, pp. 85–99.

[13] S. J. Suprapto, “Tinjauan tentang unsur tanah jarang,” Bul. Sumber Daya Geol., vol. 4, no. 1, pp. 36–47, 2009.

[14] H. Syaeful, I. G. Sukadana, and A. Sumaryanto, “Radiometric Mapping for Naturally Occurring Radioactive Materials (NORM) assessment in Mamuju, West Sulawesi,” Atom Indones., vol. 40, no. 1, p. 35, 2014.

[15] F. D. Indrastomo, I. G. Sukadana, and Suharji, “Identifikasi pola struktur geologi sebagai pengontrol sebaran mineral radioaktif berdasarkan kelurusan pada citra Landsat-8 di Mamuju, Sulawesi Barat,” Eksplorium, vol. 38, no. 2, pp. 71–80, 2017.

[16] F. D. Indrastomo, I. G. Sukadana, A. Saepuloh, A. H. Harsolumakso, and D. Kamajati, “Interpretasi vulkanostratigrafi daerah Mamuju berdasarkan analisis citra Landsat-8,” Eksplorium, vol. 36, no. 2, pp. 71–88, 2015.

[17] M. I. J. Putra and Sobirin, “Mapping apatite-ilmenite rare earth element mineralized zone using fuzzy logic method in Sijuk District, Belitung,” Int. J. Remote Sens. Earth Sci., vol. 15, no. 1, pp. 1–14, 2018.

[18] Wikarno, D. A. D. Suyatna, and S. Sukardi, “Granitoids of Sumatra and the Tin Islands BT - Geology of Tin Deposits in Asia and the Pacific,” 1988, pp. 571–589.

[19] J. A. Katili, “Structure and age of the indonesian tin belt with special reference to Bangka,” Tectonophysics, vol. 4, no. 4, pp. 403–418, 1967.

[20] F. S. Mu’awanah, B. Priadi, Widodo, I. G. Sukadana, and R. Ardiansyah, “Uranium mobility on active stream sediment in Mamuju area, West Sulawesi,” Eksplorium, vol. 39, no. 2, pp. 95–104, 2018.

[21] A. N. H. Hede, Syafrizal, and S. Gunawan, “Assessment of granitoid-related mineralization using visible near-infrared and shortwave infrared reflectance spectroscopy,” in International Symposium on Earth Science and Technology 2018, 2018, pp. 144–149.

[22] I. G. Sukadana, F. D. Indrastomo, and Ngadenin, “Distribution of rock alteration based on Th/U ratio in Tapalang, Mamuju, West Sulawesi,” Ris. Geo. Tam, vol. 28 no. 2, pp. 141–155, 2018.

[23] I. G. Sukadana, A. Harijoko, and L. D. Setijadji, “Tectonic setting of Adang Volcanic Complex in Mamuju Region, West Sulawesi Province,” Eksplorium, vol. 36, no. 1, pp. 31–44, 2015.

[24] Syafrizal, A. N. H. Hede, and A. O. Nabilla, “Using grain mineralogy to observe the rare earth element content of alluvial tin on Bangka Island, Indonesia,” in International Symposium on Earth Science and Technology 2018, 2018, pp. 605–608.

[25] D. J. Turner, “Reflectance spectroscopy and imaging spectroscopy of rare earth element-bearing mineral and rock samples,” The University of Columbia, 2015.

[26] J. W. Plaue, G. L. Klunder, I. D. Hutcheon, and K. R. Czerwinski, “Near infrared reflectance spectroscopy as a process signature in uranium oxides,” J. Radioanal. Nucl. Chem., vol. 296, no. 1, pp. 551–555, 2013.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.