Pemisahan Cerium dari Logam Tanah Jarang Hidroksida Melalui Kalsinasi dan Pelindian Menggunakan HNO3 Encer

Kurnia Trinopiawan, Maria Veronica Purwani, Mutia Anggraini, Riesna Prassanti

DOI: http://dx.doi.org/10.55981/eksplorium.2019.5411

Abstract


ABSTRAK

Aplikasi Logam Tanah Jarang (LTJ) banyak digunakan di berbagai bidang yang berhubungan dengan modernisasi. Hal ini menyebabkan banyak perusahaan mengembangkan teknik pengolahan untuk mengekstraksi LTJ dari deposit mineral tanah jarang. Pengolahan LTJ hidroksida menjadi cerium oksida, lanthanum oksida dan konsentrat neodimium telah dilakukan oleh PSTA-BATAN bekerjasama dengan PTBGN-BATAN. Setelah dilakukan kajian keekonomian, ternyata penggunaan asam nitrat pekat pada proses pelarutan cerium meyebabkan pemakaian ammonia berlebih. Oleh karena itu, inovasi proses perlu dilakukan menggunakan metode kalsinasi dan pelindian hasil kalsinasi dengan HNO3 encer. Penelitian ini bertujuan untuk mengetahui efektifitas proses kalsinasi dan pelindian dengan HNO3 encer. Kalsinasi pada suhu 1000°C dengan parameter yang diamati adalah waktu kalsinasi, konsentrasi HNO3, dan tingkat pelindian. Dari hasil penelitian diketahui bahwa kalsinasi dapat mengkonversi LTJ hidroksida menjadi LTJ oksida. Semakin lama waktu kalsinasi, LTJ oksida yang terbentuk semakin sempurna. Proses kalsinasi selama tiga jam meningkatkan kadar La, Ce, dan Nd yang semula 7,80%; 28,00%; dan 15,11% menjadi 12,69%; 45,50%; dan 24,45%. Kinetika reaksi kalsinasi LTJ hidroksida mengikuti proses reaksi kimia dengan persamaan y = 0,3145x + 0,0789 dan R2 = 0,9497. Kemudian, LTJ oksida hasil kalsinasi direaksikan dengan HNO3 encer. Semakin besar konsentrasi HNO3 pada berbagai tingkat pelindian, efisiensi pelindian La dan Nd semakin besar sedangkan Ce tidak dapat dilakukan pelindian atau efisiensi pelindian mendekati nol. Proses pelindian optimum pada kondisi pelindian tiga tingkat menggunakan 1 M HNO3. Kinetika reaksi pelindian mengikuti model susut inti reaksi kimia permukaan dengan persamaan y = 0,1732x – 0,2088 dan R2 = 0,9828.

ABSTRACT

Application of Rare Earth Elements (REE) uses broadly in various fields related to modernization. It causes many companies are developing processing techniques to extract REE from rare earth mineral deposits. REE hydroxide processing into cerium oxide, lanthanum oxide, and neodymium concentrates has conducted by PSTA-BATAN in collaboration with PTBGN-BATAN. The previous economic study issued in excessive ammonia caused by the use of concentrated nitric acid in the cerium dissolution process. Therefore, process innovation is necessary to do by calcination and leaching methods using dilute HNO3. This research aims to determine the effectiveness of the calcination and leaching process with dilute HNO3. Calcination conducted at 1000°C temperatures with the observing parameters is calcination time, HNO3 concentration, and leaching rate. The result of the study is that calcination can convert REE hydroxide into REE oxide. The longer calcination time, the easier the REE oxide formed. The three hours calcination process enhances the concentration of La, Ce, and Nd from 7.80%, 28.00%, and 15.11% to 12.69%, 45.50%, and 24.45% respectively. The kinetic reaction of the RE(OH)3 calcination reaction follows a chemical reaction process with the equation y = 0.3145x + 0.0789 and R2 = 0.9497. Then, REE oxide from calcination reacted with dilute HNO3. The higher the concentration of HNO3 at various leaching levels, the better the leaching efficiency of La and Nd while Ce is impossible to leach or the leaching efficiency is close to zero. The optimum leaching process on three levels of leaching conditions is using 1 M HNO3. The leach reaction kinetics follows the core shrinkage model of the surface chemical reaction with the equation y = 0.1732x - 0.2088 and R2 = 0.9828.


Keywords


logam tanah jarang; kalsinasi; pelindian; HNO3

References


[1] EC European Commission, “Report of the Ad-Hoc Working Group on Defining Critical Raw Materials,” in Report on Critical Raw Materials for the EU, Brussels, 2014, p. 41.

[2] S. Massari and M. Ruberti, “Rare Earth Elements as Critical Raw Materials: Focus on International Markets and Future Strategies,” Resour. Policy, vol. 38, no. 1, pp. 36–43, 2013.

[3] E. Jorjani, A. H. Bagherieh, and S. C. Chelgani, “Rare Earth Elements Leaching from Chadormalu Apatite Concentrate: Laboratory Studies and Regression Predictions,” Korean J. Chem. Eng., vol. 28, no. 2, pp. 557–562, 2011.

[4] C. Tunsu, M. Petranikova, M. Gergorić, C. Ekberg, and T. Retegan, “Reclaiming Rare Earth Elements from End-of-life Products: A Review of The Perspectives for Urban Mining Using Hydrometallurgical Unit Operations,” Hydrometallurgy, vol. 156, pp. 239–258, 2015.

[5] L. Wang, Z. Long, X. Huang, Y. Yu, D. Cui, and G. Zhang, “Recovery of Rare Earths from Wet-Process Phosphoric Acid,” Hydrometallurgy, vol. 101, no. 1–2, pp. 41–47, 2010.

[6] A. Didier, B. Putlitz, L. P. Baumgartner, A.-S. Bouvier, and T. W. Vennemann, “Evaluation of Potential Monazite Reference Materials for Oxygen Isotope Analyses by SIMS and Laser Assisted Fluorination,” Chem. Geol., vol. 450, pp. 199–209, 2017.

[7] F. Sadri, F. Rashchi, and A. Amini, “Hydrometallurgical Digestion and Leaching of Iranian Monazite Concentrate Containing Rare Earth Elements Th, Ce, La and Nd,” Int. J. Miner. Process., vol. 159, pp. 7–15, 2017.

[8] N. Krishnamurthy and C. K. Gupta, Extractive Metallurgy of Rare Earths, 2nd Editio. Boca Raton: CRC Press, 2015.

[9] K. Binnemans, P. T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton, and M. Buchert, “Recycling of rare earths : a critical review,” J. Clean. Prod, vol. 51, pp. 1–22, 2013.

[10] Z. Chen, “Global Rare Earth Resources and Scenarios of Future Rare Earth Industry,” J. Rare Earths, vol. 29, no. 1, pp. 1–6, 2011.

[11] T. Dutta, K.-H. Kim, M. Uchimiya, E. E. Kwon, B.-H. Jeon, A. Deep, and S.-T. Yun, “Global Demand for Rare Earth Resources and Strategies for Green Mining,” Environ. Res., vol. 150, pp. 182–190, 2016.

[12] L. Berry, J. Galvin, V. Agarwal, and M. S. Safarzadeh, “Alkali Pug Bake Process for The Decomposition of Monazite Concentrates, Minerals Engineering,” Miner. Eng., vol. 109, pp. 32–41, 2017.

[13] B. Bulfin, A. J. Lowe, K. Keogh, B. Murphy, O. Lubben, S. A. Krasnikof, and I. Shvets, “Analytical Model of CeO2 Oxidation and Reduction,” J. Phys. Chem., vol. 46, pp. 24129–24137, 2013.

[14] R. D. Abreu and C. A. Morais, “Purification of Rare Earth Elements from Monazite Sulphuric Acid Leach Liquor and The Production of High-purity Ceric Oxide,” Miner. Eng., vol. 23, no. 6, pp. 536–540, 2010.

[15] K. Stone, A. M. T. S. Bandara, G. Senanayake, and S. Jayasekara, “Processing of Rare Earth Phosphate Concentrates: A comparative Study of Pre-Leaching With Perchloric, Hydrochloric, Nitric and Phosphoric Acids and Deportment of Minor/major Elements,” Hydrometallurgy, vol. 163, pp. 137–147, 2016.

[16] B. Ma, W. Yang, B. Yang, C. Wang, Y. Chen, and Y. Zhang, “Pilot-scale Plant Study on The Innovative Nitric Acid Pressure Leaching Technology for Laterite Ores,” Hydrometallurgy, vol. 155, pp. 88–94, 2015.

[17] A. Amiri, G. D. Ingram, A. V Bekker, I. Livk, and N. E. Maynard, “A Multi-stage, Multi-reaction Shrinking Core Model for Self-Inhibiting Gas–Solid Reactions,” Adv. Powder Technol., vol. 24, pp. 728–736, 2013.

[18] T. Wanjun, Y. Liu, Y. Xi, and W. Cunxin, “Kinetic Studies of The Calcination of Ammonium Metavanadate by Thermal Methods,” Ind. Eng. Chem. Res., vol. 43, no. 9, p. 2054−2059, 2004.

[19] G. Zhang, T. Guo, H. Zheng, and Z. Li, “Effect of Calcination Temperature on Catalytic Performance of CuCe/AC Catalysts for Oxidative Carbonylation of Methanol,” J. Fuel Chem. Technol., vol. 44, no. 6, pp. 674–679, 2016.

[20] G. Zhan, J. Yu, Z. Xu, F. Zhou, and R. Chi, “Kinetics of Thermal Decomposition of Lanthanum Oxalate Hydrate,” Trans. Nonferrous Met. Soc., vol. 22, p. 925−934, 2012.

[21] D. D. Wu, S. M. Wen, J. Yang, and J. S. Deng, “Investigation of Dissolution Kinetics of Zinc from Smithsontie in 5-sulphosalicylic Acid Solution,” Can. J. Metall. Mater. Sci., vol. 54, no. 1, pp. 51–57, 2015.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.