Identifikasi Keterdapatan Mineral Radioaktif pada Urat-Urat Magnetit di Daerah Ella Ilir, Melawi, Kalimantan Barat
DOI: http://dx.doi.org/10.55981/eksplorium.2019.5350
Abstract
Ella Ilir secara administratif terletak di Kabupaten Melawi, Kalimantan Barat. Geologi regional daerah Ella Ilir tersusun atas batuan malihan berumur Trias–Karbon yang diterobos oleh batuan granitik berumur Yura dan Kapur. Keterdapatan mineral radioaktif di daerah tersebut terindikasi dari radioaktivitas urat-urat magnetit pada batuan malihan berumur Trias–Karbon dengan kisaran nilai 1.000 c/s hingga 15.000 c/s. Tujuan dari penelitian ini adalah menentukan jenis cebakan mineral bijih dan mengidentifikasi keterdapatan mineral radioaktif pada urat-urat bijih magnetit di daerah Ella Ilir. Metode yang digunakan adalah pemetaan geologi, pengukuran radioaktivitas, analisis kadar uranium, dan analisis mineragrafi beberapa sampel urat bijih magnetit. Litologi daerah penelitian tersusun oleh kuarsit biotit, metatuf, metabatulanau, metapelit, granit biotit, dan riolit. Sesar sinistral barat-timur dan sesar dekstral utara-selatan merupakan struktur sesar yang berkembang di daerah ini. Komposisi mineral urat-urat magnetit terdiri dari mineral-mineral bijih besi, sulfida, dan radioaktif. Mineral bijih besi terdiri dari magnetit, hematit, dan gutit. Mineral sulfida terdiri dari pirit, pirhotit, dan molibdenit sedangkan mineral radioaktif terdiri dari uraninit dan gumit. Keterdapatan urat-urat bijih magnetit dikontrol oleh litologi dan struktur geologi. Urat-urat magnetit pada metabatulanau berukuran tebal (1,5–5 m), mengisi rekahan-rekahan yang terdapat di sekitar zona sesar. Sementara itu, urat-urat magnetit pada metapelit berukuran tipis (milimetrik–sentimetrik), mengisi rekahan-rekahan yang sejajar dengan bidang sekistositas. Cebakan mineral bijih di daerah penelitian adalah cebakan bijih besi atau cebakan bijih magnetit berbentuk urat karena proses hidrotermal magmatik.
ABSTRACTElla Ilir administratively located in Melawi Regency, West Kalimantan. Regional geology of Ella Ilir area is composed of metamorphic rocks in Triassic–Carboniferous age which are intruded by Jurassic and Cretaceous granitic rocks. Radioactive minerals occurences in the area are indicated by magnetite veins radioactivities on Triassic to Carboniferous metamorphic rocks whose values range from 1,000 c/s to 15,000 c/s. Goal of the study is to determine the type of ore mineral deposits and to identify the presence of radioactive mineral in magnetite veins in Ella Ilir area. The methods used are geological mapping, radioactivity measurements, analysis on uranium grades, and mineragraphy analysis of severe magnetite veins samples. Lithologies of the study area are composed by biotite quartzite, metatuff, metasilt, metapellite, biotite granite, and ryolite. The east-west sinistral fault and the north-south dextral fault are the developed fault structures in this area. Mineral composition of magnetite veins are consists of iron ore, sulfide, and radioactive minerals. Iron ore mineral consists of magnetite, hematit, and goetite. Sulfide minerals consist of pyrite, pirhotite, and molybdenite, while radioactive minerals consist of uraninite and gummite. The occurences of magnetite veins are controlled by lithology and geological structures. The magnetite veins in metasilt are thick (1.5–5 m), filled the fractures in the fault zone. Meanwhile, the magnetite veins in metapellite are thinner (milimetric–centimetric), filled the fractures that are parallel to the schistocity. The ore deposits in the study area are iron ore deposits or magnetite ore deposits formed by magmatic hydrothermal processes.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
[1] Amiruddin and D. S. Trail, Peta Geologi Lembar Nanga Pinoh Kalimantan Skala 1 : 250.000. Bandung: Pusat Penelitian dan Pengembangan Geologi, 1993.
[2] R. B. Tate, “Cross-border Correlation of Geological Formations in Sarawak and Kalimantan,” Bulletin of the Geological Society of Malaysia, vol. 28, pp. 63–95, 1991.
[3] P. E. Pieters and P. Sanyoto, Peta Geologi Lembar Pontianak/Nangataman, Kalimantan Skala 1:250.000. Bandung: Pusat Penelitian dan Pengembangan Geologi, 1993.
[4] L. Davies, R. Hall, and R. Amstrong, “Cretaceous Crust in SW Borneo: Petrological, Geochemical and Geochronological Constraints from the Schwaner Mountains,” in Proceedings Indonesian Petroleum Association, 38th Annual Convention and Exhibition, pp. IPA14-G-025, May, 2014.
[5] L. B. Davies, SW Borneo Basement: Age, origin and character of igneous and metamorphic rocks from the Schwaner Mountains. London: Royal Holloway University of London, 2013.
[6] P. R. Williams, C. R. Johnston, R. A. Almond, and W. H. Simamora, “Late Cretaceous to Early Tertiary Structural Elements of West Kalimantan,” Tectonophysics, vol. 148, no. 3–4, pp. 279–297, 1988.
[7] N. S. Haile, M. W. McElhinny, and I. McDougall, “Palaeomagnetic Data and Radiometric Ages from the Cretaceous of West Kalimantan (Borneo), and Their Significance in Interpreting Regional Structure,” Journal of the Geological Society, vol. 133, no. 2, pp. 133–144, 1977.
[8] Amiruddin, “Cretaceous Orogenic Granite Belts, Kalimantan, Indonesia,” Jurnal Geologi dan Sumber Daya Mineral, vol. 19, no. 3, pp. 167–176, 2009.
[9] N. I. Setiawan, Y. Osanai, N. Nakano, T. Adachi, K. Yonemura, A. Yoshimoto, J. Wahyudiono, and K. Mamma, “An Overview of Metamorphic Geology from Central Indonesia: Importance of South Sulawesi, Central Java and South–West Kalimantan Metamorphic Terranes,” Bulletin of the Graduate School of Social and Cultural Studies, Kyushu University, vol. 19, pp. 39–55, 2013.
[10] N. I. Setiawan, Y. Osanai, N. Nakano, T. Adachi, L. D. Setiadji, and J. Wahyudiono, “Late Triassic Metatonalite from the Schwaner Mountains in West Kalimantan and its contribution to Sedimentary Provenance in the Sundaland,” Berita Sedimentologi, vol. 12, no. 28, pp. 4–12, 2013.
[11] H. T. Breitfeld, R. Hall, T. Galin, M. A. Forster, and M. K. BouDagher-Fadel, “A Triassic to Cretaceous Sundaland-Pacific Subduction Margin in West Sarawak, Borneo,” Tectonophysics, vol. 694, pp. 35–56, 2017.
[12] BATAN CEA, Prospect To Development Uranium Deposits In Kalimantan, Volume I (General Reconaissance), Jakarta, 1976.
[13] Ngadenin, A. Sumaryanto, H. Syaeful, and I. G. Sukadana, “Geologi dan Mineralisasi Uranium Daerah Kalan, Kabupaten Melawi, Kalimantan Barat,” in Prosiding Seminar Nasional Kebumian XII, pp. 108–114, Sept. 14, 2017.
[14] Ngadenin, D. Soetarno, S. Tjokrokardono, R. Witjahyati, L. Subiyantoro, M. Widodo, B. Soetopo, Y. Wusana, Rusmadi, Handoko, Sujiman, and Paimin, Sintesis Geologi dan Mineralisasi Uranium Cekungan Kalan, Kalimantan Barat, in: Kapita Selekta Sintesis Geologi dan Mineralisasi Uranium Kalan dan Sekitarnya Serta Perspektif Perkembangan Permintaan, Pasokan dan Harga Uranium Dunia, Suprapto,dkk (Ed.), Pusat Pengembangan Bahan Galian Nuklir-BATAN, Jakarta, 2005.
[15] S. Tjokrokardono, B. Soetopo, L. Subiantoro, and K. S. Widana, Geologi dan Mineralisasi Uranium Kalan, Kalimantan Barat, in: Kumpulan Laporan Hasil Penelitian Tahun 2005, BATAN, Jakarta, 2005, pp. 27–52.
[16] K. Busch, S. Tjokrokardono, and Djawadi, “Investigation of The uranium Mineralization in Rirang Valey, West Kalimantan, Indonesia,” Bonn, 1986.
[17] M. Widodo, Suharji, Rusmadi, Subagyo, R. Iswanto, and A. Sutriyono, Sintesis Geologi dan Mineralisasi U Sektor Rirang, Kalan, Kalimantan Barat, in: Kapita Selekta Sintesis Geologi dan Mineralisasi Uranium Kalan dan Sekitarnya Serta Perspektif Perkembangan Permintaan, Pasokan dan Harga Uranium Dunia, Suprapto,dkk (Ed.), Pusat Pengembangan Bahan Galian Nuklir-BATAN, Jakarta, 2005, pp. 91–107.
[18] B. Soetopo, R. Witjahyati, and Y. Wusana, “Sintesa Geologi dan Pemineralan Uranium Sektor Rabau Hulu, Kalan, Kalimantan Barat,” in Prosiding Seminar Geologi Nuklir dan Sumberdaya Tambang Tahun 2004, pp. 85–99, Sept. 22, 2004.
[19] H. M. Li, L. X. Li, X. Q. Yang, and Y. B. Cheng, “Types and Geological Characteristics of Iron Deposits in China,” Journal of Asian Earth Sciences, vol. 103, pp. 2–22, 2015.
[20] P. Nadoll, J. L. Mauk, R. Leveille, L. Fisher, and R. Hough, “Magnetite - An Indicator Mineral for Hydrothermal Ore Deposits,” in Workshop on Processes that control the trace elements of Fe-oxides in ore deposits, June 30, Montreal, 2012.
[21] P. Nadoll, T. Angerer, J. L. Mauk, D. French, and J. Walshe, “The Chemistry of Hydrothermal Magnetite: A Review,” Ore Geology Reviews, vol. 61, pp. 1–32, Sept., 2014.
[22] M. A. Rajabzadeh and S. Rasti, “Investigation on Mineralogy, Geochemistry and Fluid Inclusions of the Goushti Hydrothermal Magnetite Deposit, Fars Province, SW Iran: A Comparison with IOCGs,” Ore Geology Reviews, vol. 82, pp. 93–107, April, 2017.
[23] National Research Council, Uranium Mining in Virginia: Scientific, Technical, Environmental, Human Health and Safety and Regulatory Aspect of Uranium Mining and Processing in Virginia. Washington D.C.: The National Academies Press, 2012.
[24] A. Chaki, R. K. Putrohit, and R. Mamallan, “Low Grade Uranium Deposits of India – A Bane or Boon,” Energy Procedia, vol. 7, no. 153–157, 2011.
[25] K. Kiegiel, A. Miskiewicz, D. Gajda, S. Sommer, S. Wolkowicz, and G. Zakrzewska-Koltuniewicz, Uranium in Poland: Resources and Recovery from Low-Grade Ores, in: Uranium: Safety, Resources, Separation and Thermodynamic Calculation, IntechOpen, London, 2018.
[26] S. Papeschi, G. Musumeci, and F. Mazzarini, “Heterogeneous Brittle-Ductile Deformation at Shallow Crustal Levels Under High Thermal Conditions: The Case of a Synkinematic Contact Aureole in the Inner Northern Apennines, Southeastern Elba Island, Italy,” Tectonophysics, vol. 717, pp. 547–567, 2017.
[27] J. Hennig, H. T. Breitfeld, R. Hall, and A. M. S. Nugraha, “The Mesozoic Tectono-Magmatic Evolution at the Paleo-Pacific Subduction Zone in West Borneo,” Gondwana Research, vol. 48, pp. 292–310, 2017.
Refbacks
- There are currently no refbacks.
Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)
National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.