PENGARUH DOSIS IMPLANTASI ION NITROGEN PADA SIFAT KAPASITANSI POLIMER PVDF DAN PVDF-HFP

Riza Nor Hudayawan(1), Darsono Darsono(2), Damar Yoga Kusuma(3),


(1) Universitas Ahmad Dahlan
(2) PSTA-BATAN
(3) Fisika F-MIPA UAD
Corresponding Author

Abstract


Material berdensitas energi elektrik tinggi sebagai bahan dielektrik kapasitor sangat diperlukan dalam industri bidang elektronika. Tujuan penelitian ini ialah mengkarakterisasi dan menganalisis polimer PVDF( Poly vinylidene fluorde) dan PVDF-HFP (Poly vinylidene fluoride-co-hexafluoropropene)  sebelum dan sesudah diimplan ion nitrogen. Metode penelitian yang dilakukan ialah menyiapkan sampel lapisan tipis Polimer PVDFdan PVDF-HFP kemudian diimplan menggunakan ion nitrogen pada dosis 4,69 x 1016 ion/cm2 hingga 1,41 x 1018 ion/cm2 pada energi 10 keV. Selanjutnya nilai kapasitansi, faktor disipasi dan kekuatan dielektrik sampel dikarakterisasi menggunakan LCR meter GW-Instek 800. Morfologi dan ikatan struktur dari sampel dikarakterisasi menggunakan SEM dan FTIR. Hasil percobaan menunjukkan bahwa terjadi peningkatan nilai kapasitansi sebesar 4,3 kali pada polimer PVDF dan 1,4 kali pada polimer PVDF-HPF. Peningkatan nilai kapasitansi disebabkan bertambahnya ikatan rangkap C=C pada PVDF dan PVDF-HFP yang diimplan ion nitrogen. Hal tersebut dibuktikan dari hasil karakterisasi FTIR dan SEM. Namun demikian nilai kekuatan dielektrik mengalami penurunan akibat semakin konduktifnya polimer PVDF dan PVDF-HPF. Untuk sampel PVDF ada kapasitansi optimum dicapai pada dosis 9,38 x 1017 ion/cm2 sedangkan untuk sampel PVDF-HFP diatas dosis tersebut memperlihatkan gejala saturasi. Nilai kapasitansi optimal diperoleh berturut-turut sebesar 0,089483 nF, faktor disipasi 0,129613 % pada polimer PVDF dan 0,134889 nF, faktor disipasi 0,09784 % untuk polimer PVDF-HFP.


Keywords


kapasitansi, implantasi, ion nitrogen, polimer, karakterisasi

References


[1] Y. FENG, W. L. LI, J. P. WANG, J. H. YIN dan W. D. FEI, Core–shell structured BaTiO3@carbon hybrid particles for polymer composites with enhanced dielectric performance, J. Mater. Chem. A, 3, 20313, 2015.

[2] FEI, L., HUO, R., HUANG, X., LEI, Q. dan JIANG, P., Crystalline Properties, Dielectric Response and Thermal Stability of In-situ Reduced Graphene Oxide/Poly(vinylidene fluoride) Nanocomposites, EEE T.Dielect. El. In., 21, 144, 2014.

[3] DECOURT, B. dan R. DEBARRE, Electricity storage Factbook,Schlumberger Business Consulting Energy Institute,Paris, 2013.

[4] TIAN, XIUZHI dan JIANG, XUE.Poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) membranes for ethyl acetate removal from water, Journal of Hazardous Materials 153, 128–135, 2008.

[5] TANG, H. dan H.A, SODANO. Ultra High Energy Density Nanocomposite Capacitors with Fast Discharge Using Ba0.2Sr0.8TiO3 Nanowires, Nano Letters, 13(4), 1373-1379, 2013.

[6] CHU, B., X. ZHOU, K. REN, B. NEESE, M. LIN, Q. WANG, F. BAUER, Q.M. ZHANG, A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed. Science, 313(5785), 334-336, 2006.

[7] BAOYAN, FAN., FEIHUA, LIU., GUANG, YANG., HE LI , GUANGZU, ZHANG., SHENGLIN, JIANG., QING WANG, Dielectric materials for high-temperature capacitors.IET Nanodielectr, Vol. 1 Iss. 1, pp. 32-40, 2018.

[8] Sviridov, D. V., Chemical aspects of implantation of high-energy ions into polymeric materials, Usp. Khim. 363-377, 2002; Russian Chem. Reviews, 315–327,2002.

[9] POPOK, V.N, Ion Implantation of Polymers: Formation of Nanoparticulate Materials, Rev. Adv. Sci., 30, 1-26, 2012.

[10] JIONGXIN, L., High Dielectric Constant Polymer Nanocomposites for Embedded Capacitor Applications. Dissertation in Georgia Institute of Technology, 2008.

[11] LOTHONGKAM, C. Dielectric strength behaviour and mechanical properties of transparent insulation materials suitable to optical monitoring of partial discharges. Dissertation in BAM Bundesanstalt für Materialforschung und –prüfung,2014.

[12] FENG, Y., LI, W.L., HOU, Y. F., YU, Y., CAO, W.P., ZHANG, T. D. dan FEI, W.D., Enhanced Dielectric Properties of PVDF HFP/BaTiO3-nanowires Composite Induced by Interfacial Polarization and Wire-shape, J. Mat Chem C,1-3, 2012.

[13] YOUNAS, H., BAI, H., SHAO, J., HAN, Q., LING, Y., HE, Y., Super-Hydrophilic And Fouling Resistant Pvdf Ultrafiltration Membranes Based on a Facile Prefabricated Surface. J. Membr. Sci., 541, 529–540, 2017.

[14] LI, N., FU, Y.; LU, Q.; XIAO, C., Microstructure And Performance Of A Porous Polymer Membrane With A Copper Nano-Layer Using Vapor-Induced Phase Separation Combined With Magnetron Sputtering, Polymers, 9, 524, 2017.

[15] CHEN, F. SHI, X., CHEN, X., CHEN, W, Preparation and Characterization of Amphiphilic Copolymer PVDF-G-Pmabs and Its Application In Improving Hydrophilicity And Protein Fouling Resistance of PVDF Membrane, Appl. Surf. Sci., 427, 7877–7897, 2018.

[16] ZHEN-YU, CUI., YOU-YI, XU., LI-PING, ZHU., HUI-YU, DENG., JIAN-YU, WANG dan BAO-KU, ZHU. Preparation of PVDF-HFP Microporous Membranes via the Thermally Induced Phase Separation Process. Journal of Macromolecular ScienceR , Part B: Physics, 48:41–54, 2009.

[17] LIU, W., ZHANG, X.K., WU F. dan XIANG, Y., A Study On PVDF-HFP Gel Polymer Electrolyte for Lithium-Ion Batteries. IOP Conf. Series: Materials Science and Engineering, 012036, 213,2017.

[18] LI, W., PEI, D., GUO, X., CHENG, M.K., LEE, S., LIN, Q., KING, S.W. dan SHOHET J. L., Effects of Cesium Ion-Implantation on Mechanical and Electrical Properties of Organosilicate Low-K Films, Applied Physics Letters 108, 202901, 2016.

[19] LIU, S., XIU, S., SHEN, B., ZHAI, J. dan KONG, L.B., Dielectric Properties and Energy Storage Densities of Poly(vinylidenefluoride) Nanocomposite with Surface Hydroxylated Cube Shaped Ba0.6Sr0.4TiO3 Nanoparticles, Polymers, 8, 45, 2016.

[20] E.A. HEGAZY, H. ABDEL-REHIM, D.A. DIAA, A. EL-BARBARY, Controlling of Degradation Effects in Radiation Processing of Polymers, IAEA-TECDOC-1617, 2009.

[21] KABANOV, V.Y., FELDMAN, V. I., ERSHOV, B.G., POLIKARPOV, A. I., KIRYUKHIN, D.P., dan APEL, P.Y., Radiation Chemistry of Polymers, High Energy Chemistry, 43, 1–18, 2009.

[22] ABBRENT, S., PLESTIL, J., HLAVATA, D., LINDGREN, J., TEGENFELDT, J., WENDSJÖ, Å. Crystallinity and morphology of PVdF–HFP-based gel electrolytes. Polymer, 42, 1407–1416, 2001.

[23] MANUEL STEPHAN, A., NAHM, K.S.; ANBU KULANDAINATHAN, M., RAVI, G., WILSON, J. Electrochemical Studies on Nanofiller Incorporated Poly(Vinylidene Fluoride-Hexafluoropropylene) (Pvdf- HFP) Composite Electrolytes for Lithium Batteries. J. Appl. Electrochem., 36, 1091-1097, 2006.

[24] KORNACKA, E.M., PRZYBYTNIAK, G., dan ŚWIĘSZKOWSKI, W., The influence of crystallinity on radiation stability of UHMWPE. Radiat. Phys. Chem., 84, 151-156, 2013.


Full Text: PDF (Bahasa Indonesia)

DOI: 10.17146/gnd.2018.21.2.4486

Copyright (c) 2018 GANENDRA Majalah IPTEK Nuklir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
slot gacor slot