REKAM JEJAK KIMIA PERMUKAN SIO2 PRODUKSI FASILITAS TEKNOLOGI PEMURNIAN ZIRKONIUM PSTA

Muzakky Akhmad(1),


(1) batan tenaga atom, pusat sains dan teknologi akselerator
Corresponding Author

Abstract


Abstrak

Rekam jejak kimia permukan SiO2 produksi fasilitas teknologi pemurnian zirkonium PSTA. Telah dilakukan rekam jejak kimia permukan SiO2 produksi fasilitas teknologi pemurnian zirkonium PSTA. Tujuan dari pelenilian ini adalah untuk melakukan merekaman jejak gugus silanol (≡Si-OH), siloksan (≡Si-O-Si≡) serta group air (OH) di permukaan produk hasil pemurnian SiO2gel. Sebagai parameter proses pemurnian dilakukan variable fungsi suhu, waktu dan konsentrasi asam HF.  Rekam jejak SiO2(gel) dilakukan dengan Fourier- transform infrared (FT-IR) spectroscopy  dan deteksi desorpsi pengotor Fe3+ memakai absorpsi serapan atom (AAS).  Hasil  Pemurnian SiO2(gel) dengan pelarut campuran HF dan HCl, sebaiknya dilakukan pada komposisi 1% HF dan 1N HCl pada suhu 80 oC selama 8 jam. Pada keadaan proses pemurnian 5%HF, suhu 100 oC dan waktu konatak 10 jam akan merusan gugus silanol, siloksan dan group air.  Rekam jejak FTIR pada hasil terdeteksi  puncak di panjang gelombang 3448 cm-1, 1635 cm-1, 1103 cm-1 dan 462 cm-1 yang merupakan karakteristik dari SiO2.  Dengan munculnya puncak disekitar panjang gelombang 1103 cm-1 dapat diprediksi cuplikan terdapat mineral jenis α quart.  Proses pemurnian SiO2(gel) yang dilakukan kondisi optimal, ternyata dapat menghilangkan pengotor dalam filtrat sebesar 60,4 ppm Fe3+

 


Keywords


SiO2(gel), silanol, siloksan, group air, FTIR, AAS

References


DAFTAR PUSTAKA

[1] L. Peng, W. Qisui, L. Xi, and Z. Chaocan, “Investigation of the states of water and OH groups on the surface of silica,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 334, no. 1–3, pp. 112–115, 2009.

[2] T. Isoda, R. Maeda, and A. Minohoshi, “Development of a Silica Surface Modified with Reactive Amino Group as an Immobilized Carrier for Use as Biosensor Material,” vol. 27, no. 2, pp. 165–176, 2015.

[3] M. Praeger, I. L. Hosier, A. S. Vaughan, and S. G. Swingler, “The effects of surface hydroxyl groups in polyethylene-silica nanocomposites,” 33rd Electr. Insul. Conf. EIC 2015, no. June, pp. 201–204, 2015.

[4] X. Huang, N. P. Young, and H. E. Townley, “Characterization and Comparison of Mesoporous Silica Particles for Optimized Drug Delivery,” Nanomater. Nanotechnol., vol. 4, p. 2, 2014.

[5] Iler, “the chemistry of silica chapter 6: The Surface Chemistry of Silica,” Chem. Silica, pp. 622–729, 1979.

[6] W. Y. D. Yong, Z. Zhang, G. Cristobal, and W. S. Chin, “One-pot synthesis of surface functionalized spherical silica particles,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 460, no. October, pp. 151–157, 2014.

[7] Poernomo.H, “Informasi umum zirkonium,” BADAN TENAGA NUKLIR NASIONAL, PUSAT TEKNOLOGI AKSELERATOR DAN PROSES BAHAN. Jl. Babarsari Kotak Pos 6101 Ykbb Yogyakarta 55281, 2012.

[8] J. Zhang, L. Wang, and D. Jiang, “Decomposition process of zircon sand concentrate with CaO-NaOH,” Rare Met., vol. 31, no. 4, pp. 410–414, 2012.

[9] I. B. Koki, “Efficiencies of Acid Digestion / Leaching Techniques in the Determination of Iron Concentrations in Soils from Challawa Industrial Estate Kano , Nigeria,” Merit Res. J. Environ. Sci. Toxicol., vol. 3, no. 5, pp. 65–71, 2015.

[10] M. Abdisy, S. Al, L. P. Setiawan, M. Utami, and W. Trisunaryanti, “Study of acid leaching in the preparation of silicon from lapindo mud,” Int. J. Acad. Sci. Res., vol. 2, no. 4, pp. 31–36, 2014.

[11] M. Khalifa, M. Hajji, and H. Ezzaouia, “Impurity removal process for high-purity silica production by acid leaching,” EPJ Web Conf., vol. 29, pp. 2–5, 2012.

[12] A. Kheloufi, Y. Berbar, A. Kefaifi, S. A. Medjahed, and F. Kerkar, “Improvement of impurities removal from silica sand by using a leaching process,” Chem. Eng. Trans., vol. 24, pp. 1513–1518, 2011.

[13] Y. Yue, Y. Bai, and J. J. Wang, “Application of raman spectroscopy for tracing the status of silica fume in cementitious materials,” Int. Conf. Durab. Concr. Struct. ICDCS 2016, no. ii, pp. 1–5, 2016.

[14] M. Badertscher, P. Bühlmann, and E. Pretsch, Structure Determination of Organic Compounds. 2009.

[15] L. T. Zhuravlev, “The surface chemistry of amorphous silica,” Colloids Surf., vol. 173, pp. 1–38, 2000.

[16] C. Tang et al., “Surface chemistry and reactivity of SiO2 polymorphs: A comparative study on α-quartz and α-cristobalite,” Appl. Surf. Sci., vol. 355, pp. 1161–1167, 2015.

[17] T. Stephen, “The corrosion of silicate materials by hydrogen gas and hydrofluoric Acid,thesis of University of California, Material & molecular Research Division” 2011.

[18] P. J.Launer, “Infrared analysis of organosilocon caompond: spectra-structure correlation,Laboratory for Materials,Inc, Burnt Hills University, New York” 2015.

[19] A. A. Christy, “The Nature of Silanol Groups on the Surfaces of Silica, Modified Silica and Some Silica Based Materials,” Adv. Mater. Res., vol. 998–999, pp. 3–10, 2014.

[20] H. Rahnama, A. Sattarzadeh, F. Kazemi, N. Ahmadi, F. Sanjarian, and Z. Zand, “Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2) in plasmid DNA extraction,” Anal. Biochem., vol. 513, no. September, pp. 68–76, 2016.

[21] Y. Xu, Y. Zhou, W. Ma, S. Wang, and S. Li, “Applied Surface Science Highly sensitive and selective OFF-ON fluorescent sensor based on functionalized Fe 3 O 4 @ SiO 2 nanoparticles for detection of Zn 2 + in acetonitrile media,” Appl. Surf. Sci., vol. 276, no. 2013, pp. 705–710, 2013.


Full Text: PDF (Bahasa Indonesia)

DOI: 10.17146/gnd.2018.21.1.3922

Copyright (c) 2018 GANENDRA Majalah IPTEK Nuklir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.