NEUTRON RESPONSE FUNCTION OF BONNER SPHERE SPECTROMETER WITH 6LiI(Eu) DETECTOR

Rasito Tursinah, Bunawas Bunawas, Jungho Kim

DOI: http://dx.doi.org/10.17146/gnd.2017.20.2.3319

Sari


The detector response function was needed to measure the neutron fluence based on the count rates from Bonner Sphere Spectrometer (BSS). The determination of response function of a BSS with 6LiI(Eu) detector has been performed using Monte Carlo MCNPX code. This calculation was performed for BSS using scintillation detector of 4 mm × 4 mm 6LiI(Eu) which is placed at the center of a set of polyethylene spheres i.e bare, 2", 3", 5", 8", 10", and 12" diameters. The BSS response functions were obtained for neutron energy of 1x10-9 MeV - 1x102  MeV in 111 energy bins and each value has an uncertainty less or equal to 2 %. The response function were compared with two response functions reported in the literature i.e IAEA document in Technical Reports Series 403 (TRS-403) and the calculation from Vega-Carrillo, et al. Also validated with measurement 252Cf neutron spectra, that shown the simulated BSS spectra were quite close to the experimental measured with a differrence of 3%.

Kata Kunci


Neutron response function, BSS, 6LiI(Eu) detector, MCNPX

Teks Lengkap:

PDF

Referensi


REFERENCES

[1] J. M. Ortiz-Rodríguez, A. Reyes Alfaro, A. Reyes Haro, J. M. Cervantes Viramontes, and H. R. Vega- Carrillo, “A neutron spectrum unfolding computer code based on artificial neural networks,” Radiat. Phys. Chem., vol. 95, pp. 428–431, 2014.

[2] T. Ogata, S. Kudo, Y. Watanabe, T. Muramatsu, H. Yamamoto, S. Iwai, S. Takagi, H. Harano, T. Matsumoto, and J. Nishiyama, “The calibration of bonner sphere spectrometer,” Radiat. Prot. Dosimetry, vol. 146, no. 1–3, pp. 107–110, 2011.

[3] A. Masuda, T. Matsumoto, H. Harano, J. Nishiyama, Y. Iwamoto, M. Hagiwara, D. Satoh, H. Iwase, H. Yashima, T. Nakamura, T. Sato, T. Itoga, Y. Nakane, H. Nakashima, Y. Sakamoto, C. Theis, E. Feldbaumer, L. Jaegerhofer, C. Pioch, V. Mares, A. Tamii, and K. Hatanaka, “Response measurement of a Bonner sphere spectrometer for high-energy neutrons,” IEEE Trans. Nucl. Sci., vol. 59, no. 1 PART 2, pp. 161–166, 2012.

[4] M. Marek and L. Viererbl, “Bonner sphere spectrometer for characterization of BNCT beam,” Appl. Radiat. Isot., vol. 69, no. 12, pp. 1918–1920, 2011.

[5] R. Bedogni, C. Domingo, K. Amgarou, M. De-San-Pedro, A. Esposito, A. Gentile, and A. Pola, “Spectrometry of 50 and 100 MeV quasi monochromatic neutron fields with extended range Bonner spheres,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 746, pp. 59–63, 2014.

[6] R. Bedogni, A. Esposito, A. Gentile, M. Angelone, and M. Pillon, “Comparing active and passive bonner sphere spectrometers in the 2.5 MeV quasi mono-energetic neutron field of the ENEA frascati neutron generator (FNG),” in Radiation Measurements, 2011, vol. 46, no. 12, pp. 1757–1760.

[7] S. Garny, V. Mares, H. Roos, F. M. Wagner, and W. Rühm, “Measurement of neutron spectra and neutron doses at the Munich FRM II therapy beam with Bonner spheres,” Radiat. Meas., vol. 46, no. 1, pp. 92–97, 2011.

[8] W. H. Chu, J. H. Lan, T. C. Chao, C. C. Lee, and C. J. Tung, “Neutron spectrometry and dosimetry around 15 MV linac,” in Radiation Measurements, 2011, vol. 46, no. 12, pp. 1741–1744.

[9] G. Medkour Ishak-Boushaki, K. Boukeffoussa, Z. Idiri, and M. Allab, “Thick activation detectors for neutron spectrometry using different unfolding methods: Sensitivity analysis and dose calculation,” Applied Radiation and Isotopes, vol. 70, no. 3. pp. 515–519, 2012.

[10] J. Cao, X. Jiang, C. Jiang, H. Cao, and Y. Zejie, “Calculation of Response Function for Bonner Sphere Spectrometer,” Plasma Sci. Technol., vol. 17, no. 1, pp. 2013–2016, 2015.

[11] International Atomic Energy Agency, Compendium of neutron spectra and detector responses for radiation Protection purposes, IAEA Technical Reports Series 403. Vienna, Austria: International Atomic Energy Agency, 2001.

[12] J. I. G. Hector R. Vega-Carrillo, I. Donaire, E. Gallego, E. Manzanares, A. Lorente, M.P. Iniguez, A. Martin, dan, “Calculation of response matrix of a BSS with 6LiI(Eu) scintillator,” Rev. Mex. Fis., vol. S 54(1), pp. 57–62, 2008.

[13] K. Nafisah and M. Rachid, “Neutron and Scintillator Gamma-ray Detection using a Cs2LiYCl6 Scintillator,” EPJ Web Conf., vol. 11018, pp. 4–7, 2014.

[14] S. Esteban, C. Fleta, T. Ino, and H. Otono, “Measurement of fast neutron detection efficiency with 6 Li and 7 Li enriched CLYC scintillators,” J. Phys. Conf. Ser., vol. 763, pp. 1–5, 2016.

[15] R. J. McConn, C. J. Gesh, R. T. Pagh, R. A. Rucker, and R. G. Williams, Compendium of Material Composition Data for Radiation Transport Modeling. 2011.

[16] W. R. C. Pioch, V. Mares, “Influence of Bonner sphere response functions above 20 MeV on unfoldedneutron spectra and doses,” Radiat. Meas., vol. 45(10), pp. 1263–1267, 2010.

[17] W. Rühm, V. Mares, C. Pioch, S. Agosteo, A. Endo, M. Ferrarini, I. Rakhno, S. Rollet, D. Satoh, and V. H, “Comparison of Bonner sphere responses calculated by different Monte Carlo codes at energies between 1 MeV and 1 GeV – Potential impact on neutron dosimetry at energies higher than 20 MeV,” Radiat. Meas., vol. 67, pp. 24–34, 2014.

[18] C. Pioch, V. Mares, E. . Vashenyuk, Y. . Balabin, and W. Rühm, “Measurement of cosmic ray neutrons with Bonner sphere spectrometer and neutron monitor at 79°N,” Nucl. Instruments Methods Phys. Res. Sect. A, vol. 626, pp. 51–57, 2011


Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##