Distribution and Characteristics of Rare Earth Elements in Uranium-Ore Deposits from Rirang Area, West Kalimantan Province, Indonesia

Tyto Baskara Adimedha, Rayhan Aldizan Farenzo, I Gde Sukadana, Rosmalia Dita Nugraheni, Fadiah Pratiwi, Roni Cahya Ciputra, Frederikus Dian Indrastomo, Heri Syaeful, Yoshi Rachael

DOI: http://dx.doi.org/10.55981/eksplorium.2024.7058


Uranium and rare earth elements (REE) are essential elements for the development of green environmentally friendly, and sustainable energy. To meet the increasing demand for these raw materials, Indonesia has taken steps to explore and map potential deposits, including the Rirang Sector in Melawi Regency, West Kalimantan. However, the available information on the mineralization of these elements in the area is limited. Therefore, this study aimed to provide a detailed characterization on the petrology and geochemical characteristics of uranium ore and to synthesize the mineral genesis of uranium and REE-bearing ore in the Rirang Sector. The analytical methods used included petrography, micro-XRF, and geochemical analysis. The results showed that uranium mineralization was present in brannerites, uranophane, and swamboite associated with tourmaline and monazite ore. Similarly, REE concentrations were hosted by REE-bearing minerals, such as monazite, xenotime, and loparite. Geochemically, the uranium concentration in the monazite ore ranged from 1,110 – 28,440 ppm, while the total REE (TREE) concentration varied between 85,320 to 138,488 ppm. The formation of uranium and REE mineralization were due to the metasomatism process and its association with the Na-rich fluid of felsic intrusion. Notably, the weathering process did not enrich uranium and REE content in the soil but rather decreased it due to the leaching process and the absence of clay minerals capable of absorbing the REE cations on the surface of clay crystal structures.


monazite, rare earth elements, tourmaline, uranium, West Kalimantan

Full Text:



[1] Ngadenin, A. Sumaryanto, H. Syaeful, and I. G. Sukadana, “Geologi dan Mineralisasi Uranium di Daerah Kalan, Kabupaten Melawi, Kalimantan Barat,” in Seminar Nasional Kebumian XII, Yogyakarta: Fakultas Teknologi Mineral, Universitas Pembangunan Nasional “Veteran” Yogyakarta, 2017, pp. 108–114.

[2] Ngadenin, I. G. Sukadana, and R. Fauzi, “Preliminary overview of the prospects for rare earth elements in Kalan , West Kalimantan , Indonesia Preliminary Overview of The Prospects for Rare Indonesia,” in AIP Conference Proceedings, 2022, pp. 1–11.

[3] Suharji, Ngadenin, Wagiyanto, and Sumarno, “Peningkatan Kwalitas Estimasi Cadangan Uranium dan Unsur Tanah Jarang Sebagai Asosiasinya di Sektor Rirang Hulu, Kalimantan Barat,” Pros. Semin. IPTEK Nukl. dan Pengelolaan Sumber Daya Tambang, pp. 51–65, 2002.

[4] S. Tjokrokardono, “Studi Provinsi Uranium Kalimantan; Kajian Mineralisasi Uranium Pada Batuan Metamorf Dan Granit Di Pegunungan Schwaner,” Seminar IPTEK Nuklir dan Pengelolaan Sumber Daya Tambang. 2002.

[5] S. Tjokrokardono, L. Subiantoro, and M. Widodo, “Sintesis Geologi dan Mineralisasi Uranium Kalan dan Sekitarnya, Kalimantan Barat,” Jakarta, 2006.

[6] B. Soetopo, R. Witjahyati, and Y. Wusana, “Sintesa Geologi dan Pemineralan Uranium Sektor Rabau Hulu, Kalan, Kalimantan Barat,” Semin. Geol. Nukl. dan Sumberd. Tambang Tahun 2004, pp. 85–99, 2004.

[7] D. Savira, M. A. Gunawan, W. A. Draniswari, I. G. Sukadana, and F. Sihombing, “µxRF Application for Uranium Exploration (Case Study: Mamuju Deposit, Indonesia),” IOP Conf. Ser. Earth Environ. Sci., vol. 830, no. 1, 2021, doi: 10.1088/1755-1315/830/1/012076.

[8] I. G. Sukadana, I. W. Warmada, F. Pratiwi, A. Harijoko, T. B. Adimedha, and A. W. Yogatama, “Elemental Mapping for Characterizing of Thorium and Rare Earth Elements (REE) Bearing Minerals Using μXRF,” Atom Indones., vol. 48, no. 2, pp. 87–98, 2022, doi: 10.17146/aij.2022.1215.

[9] L. N. Warr, “IMA–CNMNC approved mineral symbols,” Mineral. Mag., vol. 85, no. 3, pp. 291–320, 2021, doi: 10.1180/mgm.2021.43.

[10] P. Alexandre, “Mineralogy and geochemistry of the sodium metasomatism-related uranium occurrence of Aricheng South, Guyana,” Miner. Depos., vol. 45, no. 4, pp. 351–367, 2010, doi: 10.1007/s00126-010-0278-7.

[11] J. A. Plant, P. R. Simpson, B. Smith, and B. F. Windley, “Uranium ore deposits-products of the radioactive earth,” Uranium Mineral. Geochemistry, Environ., no. September, pp. 255–319, 2019, doi: 10.1515/9781501509193-011.

[12] X. P. Yan, R. Kerrich, and M. J. Hendry, “Sequential leachates of multiple grain size fractions from a clay-rich till, Saskatchewan, Canada: Implications for controls on the rare earth element geochemistry of porewaters in an aquitard,” Chem. Geol., vol. 158, no. 1–2, pp. 53–79, 1999, doi: 10.1016/S0009-2541(99)00011-X.

[13] W. F. McDonough and S. s. Sun, “The composition of the Earth,” Chem. Geol., vol. 120, no. 3–4, pp. 223–253, 1995, doi: 10.1016/0009-2541(94)00140-4.

[14] S. M. McLennan, “Relationships between the trace element composition of sedimentary rocks and upper continental crust,” Geochemistry, Geophys. Geosystems, vol. 2, 2001, doi: 10.1038/scientificamerican0983-130.

[15] S. R. Taylor and S. M. McLennan, The continental crust: Its composition and evolution. 1985.

[16] C. Wang, L. Zhang, Y. Dai, and C. Lan, “Geochronological and geochemical constraints on the origin of clastic meta-sedimentary rocks associated with the Yuanjiacun BIF from the Lüliang Complex, North China,” Lithos, vol. 212–215, pp. 231–246, 2015, doi: 10.1016/j.lithos.2014.11.015.

[17] Z. Bao and Z. Zhao, “Rare-earth element mobility during ore-forming hydrothermal alteration: A case study of Dongping gold deposit, Hebei Province, China,” Chinese J. Geochemistry, vol. 22, no. 1, pp. 45–57, 2003, doi: 10.1007/bf02831545.

[18] S. Akhtar, X. Yang, and F. Pirajno, “Sandstone type uranium deposits in the Ordos Basin, Northwest China: A case study and an overview,” J. Asian Earth Sci., vol. 146, no. September 2016, pp. 367–382, 2017, doi: 10.1016/j.jseaes.2017.05.028.

[19] Y. Kanazawa and M. Kamitani, “Rare earth minerals and resources in the world,” in Journal of Alloys and Compounds, Feb. 2006, pp. 1339–1343. doi: 10.1016/j.jallcom.2005.04.033.

[20] A. Berger, E. Janots, E. Gnos, R. Frei, and F. Bernier, “Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar,” Appl. Geochemistry, vol. 41, pp. 218–228, 2014, doi: 10.1016/j.apgeochem.2013.12.013.

[21] G. W. A. Nyakairu and C. Koeberl, “Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from central Uganda,” Geochem. J., vol. 35, no. 1, pp. 13–28, 2001, doi: 10.2343/geochemj.35.13.

[22] B. K. Das, A. S. AL-Mikhlafi, and P. Kaur, “Geochemistry of Mansar Lake sediments, Jammu, India: Implication for source-area weathering, provenance, and tectonic setting,” J. Asian Earth Sci., vol. 26, no. 6, pp. 649–668, 2006, doi: 10.1016/j.jseaes.2005.01.005.

[23] R. Kritsananuwat, S. K. Sahoo, M. Fukushi, and S. Chanyotha, “Distribution of rare earth elements, thorium and uranium in Gulf of Thailand’s sediments,” Environ. Earth Sci., vol. 73, no. 7, pp. 3361–3374, 2015, doi: 10.1007/s12665-014-3624-8.

[24] D. Bakkiaraj, R. Nagendra, R. Nagarajan, and J. S. Armstrong-Altrin, “Geochemistry of sandstones from the upper Cretaceous sillakkudi Formation, Cauvery basin, Southern India: Implication for provenance,” J. Geol. Soc. India, vol. 76, no. 5, pp. 453–467, 2010, doi: 10.1007/s12594-010-0128-3.

[25] R. G. Skirrow et al., Uranium Mineral Systems : Processes , exploration criteria and a new deposit framework. Geosciences Australia Record 2009/20, 2009.

[26] A. D. Mckay and Y. Miezitis, “Australia’s uranium resources, geology and development of deposits.,” 2001. doi: 10.1159/000335161.

[27] P. A. Polito and T. K. Kyser, “The Valhalla Uranium Deposit, Qeensland, Australia,” ASEG Ext. Abstr., vol. 2006, no. 1, pp. 1–4, 2006, doi: 10.1071/aseg2006ab140.

[28] M. Cuney and K. Kyser, “Recent and not-so-recent developments in uranium deposits and implications for exploration,” Short Course Ser. Vol. 39, vol. 39, no. January 2009, p. 259, 2008.

[29] M. Cuney, A. Emetz, J. Mercadier, V. Mykchaylov, V. Shunko, and A. Yuslenko, “Uranium deposits associated with Na-metasomatism from central Ukraine: A review of some of the major deposits and genetic constraints,” Ore Geol. Rev., vol. 44, pp. 82–106, 2012, doi: 10.1016/j.oregeorev.2011.09.007.

[30] P. Bruneton and M. Cuney, Geology of uranium deposits, no. 1956. Elsevier Ltd, 2016. doi: 10.1016/B978-0-08-100307-7.00002-8.

[31] M. Bau, “Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium,” Chem. Geol., vol. 93, no. 3–4, pp. 219–230, 1991, doi: 10.1016/0009-2541(91)90115-8.

[32] G. Estrade, E. Marquis, M. Smith, K. Goodenough, and P. Nason, “REE concentration processes in ion adsorption deposits: Evidence from the Ambohimirahavavy alkaline complex in Madagascar,” Ore Geol. Rev., vol. 112, no. March, p. 103027, 2019, doi: 10.1016/j.oregeorev.2019.103027.

[33] D. Wang et al., “Exploration and research progress on ion-adsorption type REE deposit in South China,” China Geol., vol. 1, no. 3, pp. 414–423, 2018, doi: 10.31035/cg2018022.


  • There are currently no refbacks.

Google Scholar Logo SINTA Logo Logo GARUDA

Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.