Phytoremediation of Hexavalent Chromium Using Aquatic Plants in Nickel Mine Waste

Nur Vita Permatasari, Faizinal Abidin, Mifta Ulul Azmi, Yeni Novitasari, Abdul Hapid

DOI: http://dx.doi.org/10.55981/eksplorium.2023.6927

Abstract


The abundant wealth that Indonesia has is very profitable. Wealth is not only from natural resources, but wealth or biodiversity is also able to make Indonesia an independent country in managing its environment. One of the varieties that can be utilized is the existence of aquatic plants that can be used in the restoration of polluted environments. The ability of plants to recover from pollutants is called phytoremediation. Hexavalent chromium/ Cr(IV) is a hazardous waste originating from the washing of ore/open pit waste from rainwater washing. The quality standard allowed for Cr (IV), according to the Minister of Environment Regulation No. 9 of 2006, concerning the Quality Standard of Wastewater for Nickel Ore Mining Businesses and/or Activities is 0.1 mg/L. Besides being used to reduce pollutant loads, this aquatic plant can also provide aesthetic value because it has a very beautiful shape, type, color, and flowers. The purpose of this research is to find out which plants can be used to reduce hexavalent chromium levels. Variations of aquatic plants that can reduce levels of hexavalent chromium which are harmful to living things include water hyacinth/Eichornia crassipes; water hyacinth; Kayambang/ Salvinia Cucullata; Kiambang/ Apu Wood/ Pistia Stratiotes; Hydrilla verticillata; Water Bamboo/Equisetum hyemale; Water spinach / Ipomoea Aquatica; and Sagittaria lancifolia. This aquatic plant can reduce Cr (IV) up to 99.5%. The ability of these aquatic plants not only to reduce Cr (IV) but also to reduce TSS, BOD, and COD and to neutralize pH. The combination of several aquatic plants also provides a high effectiveness value.


Keywords


phytoremediation; hexavalent chromium; water mine waste; aquatic plants.

Full Text:

PDF

References


[1] Rosmini, “Pembangunan Industri Tambang Yang Berwawasan Lingkungan Di Indonesia Rosmini,” Yuriska, vol. 1, no. 2, pp. 117–123, 2010.

[2] T. Ishlah, “Kajian Pasar Mineral dan Usulan Strategi Eksplorasi Sumberdaya Mineral di Indonesia,” Lap. Pus. Sumber Daya Geol. Bandung, vol. 13, 2010.

[3] T. Ramadani, F. Pakpahan, S. Adi Pradana, M. Agus Supriyanto, and E. Mardiyono, “Implementasi Kebijakan Satu Peta Energi Sumber Daya Mineral (Esdm One Map) di Kementerian Energi Sumber Daya Mineral Republik Indonesia,” Matra Pembaruan, vol. 3, no. 2, pp. 109–118, 2019, doi: 10.21787/mp.3.2.2019.109-118.

[4] P. Prasetyo, “Sumber Daya Mineral Di Indonesia Khususnya Bijih Nikel Laterit Dan Masalah Pengolahannya Sehubungan Dengan UU Minerba 2009,” Semin. Nas. Sains dan Teknol. 2016, vol. 8, no. November, pp. 1–10, 2016.

[5] E. Fernando, “Metode Penampangan open pit di Indonesia,” duniatambang.co.id, 2020. https://duniatambang.co.id/Berita/read/1145/Metode-Penampangan-Open-Pit-di-Indonesia (accessed Mar. 26, 2021).

[6] M. K. Taklim, N. Nurjannah, and L. Wiyani, “Upaya Penurunan Krom Heksavalen Pada Air Tambang Nikel Dengan Menggunakan Reduktor Ferro Sulfat,” vol. 02, no. 02, pp. 45–51, 2017.

[7] D. E. Lestari, “Efektivitas Pengolahan Limbah Cair Domestik dengan Motode Rawa Buatan (Constructed Wetland).” Universitas Islam Negeri Alauddin Makassar, 2012.

[8] P. R. Gani, J. Abidjulu, A. D. Wuntu, and J. Kimia, “Analisis Air Limbah Pertambangan Emas Tanpa Izin Desa Bakan Kecamatan Lolayan Kabupaten Bolaang Mongondow,” vol. 6, no. 2, pp. 6–11, 2017.

[9] B. Wang, Y.-C. Sun, and R.-C. Sun, “Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: a review,” J. Leather Sci. Eng., vol. 1, no. 1, pp. 1–25, 2019.

[10] J. Buters and T. Biedermann, “Chromium (VI) contact dermatitis: getting closer to understanding the underlying mechanisms of toxicity and sensitization!,” J. Invest. Dermatol., vol. 137, no. 2, pp. 274–277, 2017.

[11] C. Jing, H. Nan, C. Wuyong, and S. Shiyu, “Controlling Cr (VI) in leather: A review from passive prevention to stabilization of chromium complexes,” J. Am. Leather Chem. Assoc., vol. 112, no. 07, pp. 250–257, 2017.

[12] K. Zarkasi, A. D. Moelyaningrum, and P. T. Ningrum, “Penggunaan Arang Aktif Kulit Durian (Durio zibethinus Murr) Terhadap Tingkat Adsorpsi Kromium (Cr 6 +) Pada Limbah Batik,” vol. 5, pp. 67–73, 2018.

[13] R. Saha, R. Nandi, and B. Saha, “Sources and toxicity of hexavalent chromium,” J. Coord. Chem., vol. 64, no. 10, pp. 1782–1806, 2011.

[14] S. Singh, A. Tripathi, and S. K. Srivastava, “Studies on removal of chromium (VI) from leather tanning industries in Unnao Industrial Area using trapa natans biosorbent,” Int. J. Eng. Sci., vol. 4911, 2016.

[15] KLHK, “Kualitas Air dan Air Limbah,” www.standardisasi.menlhk.go.id, 2021. http://standardisasi.menlhk.go.id/index.php/daftar-standar-nasional/sni/teknologi-pengujian/kualitas-air-dan-air-limbah/ (accessed Apr. 03, 2021).

[16] I. Permanajati et al., “Analisis Kualitas Air Di Lahan Reklamasi Pertambangan Nikel Desa Mohoni , Petasia,” vol. 4, no. 32, pp. 3–10, 2019.

[17] K. Rahmawati and M. W. M Widyastuti, “Kajian Kualitas Limbah Cair Kegiatan Pertambangan Bijih Nikel PT. Aneka Tambang Tbk, Halmahera Timur, Maluku Utara,” J. Bumi Indones., vol. 2, no. 2, 2013.

[18] F. D. Tuheteru, A. Arif, and M. F. Rajab, “Potential of Nickel (Ni) Phytoremediation of Adaptive Species on Revegetation Land, PT. Vale Indonesia (Tbk). Pomalaa Site Kolaka Regency,” J. Wasian, vol. 4, no. 2, p. 89, 2017, doi: 10.20886/jwas.v4i2.2855.

[19] F. Danu Tuheteru et al., “Serapan Logam Berat oleh Fungi Mikoriza Arbuskula Lokal pada Nauclea orientalis L. dan Potensial untuk Fitoremediasi Tanah Serpentine Heavy Metal Uptake by Indigenous Arbuscular Mycorrhizas of Nauclea orientalis L. and the Potential for Phytoremediation o,” pp. 76–84, 2017, [Online]. Available: https://jurnal.ugm.ac.id/jikfkt

[20] Muhlis, S. Ginting, T. Hemon, Suaib, and Y. T. Hewindati, “Exploration of plant adaptives at ferro-nickel post mining land in Pomalaa southeast Sulawesi Indonesia,” Adv. Stud. Biol., vol. 7, no. 3, pp. 97–109, 2015, doi: 10.12988/asb.2015.41056.

[21] I. Mansur, “Compost and Mycorrhizal Application on Longkida (Nauclea Orientalis) Seedling At Post-Mining Soil Pt. Antam Pomalaa Pemanfaatan Kompos Dan Mikoriza Arbuskula Pada Longkida (Nauclea Orientalis) Di Tanah Pasca Tambang Nikel Pt. Antam Pomalaa,” J. Silvikultur Trop., vol. 7, no. 1, pp. 1–7, 2016.

[22] N. Haruna, T. Wardiyati, M. D. Maghfoer, and E. Handayanto, “Berat Nikel Dengan Menggunakan Tumbuhan Endemik Belimbing Bajo (Sarcotheca Celebica Veldk) Phytoremediation Of Land Which Experiences Nickel Heavy Metal Stress By Using Endemic Plants Of Bajo Starfruit (Sarcotheca celebica Veldk),” J. TABARO, vol. 2, no. 2, pp. 239–246, 2018.

[23] S. Ginting, “Peran bahan organik dalam rehabilitasi lahan bekas tambang nikel di sulawesi tenggara,” J. Univ. Halu Oleo, pp. 1–9, 2019.

[24] J. Caroline and G. A. Moa, “Fitoremediasi Logam Timbal (Pb) (Echinodorus palaefolius) Pada Industri Peleburan Tembaga dan Kuningan,” Semin. Nas. Sains dan Teknol. Terap. III, vol. 10, no. 3, pp. 733–744, 2015.

[25] L. Neneng and D. Saraswati, “Reklamasi Lahan Kritis Bekas Penambangan Emas Menggunakan Metode Bioremediasi Dan Fitoremediasi,” EnviroScienteae, vol. 15, no. 2, p. 216, 2019, doi: 10.20527/es.v15i2.6955.

[26] A. Risma, D. Hanifa, C. Dwi, and R. Wulandari, “Pengolahan Limbah Elektroplating untuk Penurunan TSS, Total Krom dan Nikel dengan Teknik Fitoremediasi Sistem SSF-Wetland,” pp. 1–9, 2018.

[27] M. A’tourrohman, “Inventarisasi Dan Kajian Etnobotani Tanaman Akuatik Di Taman Akuatik Kebun Raya Eka Karya Bali,” J. Bol. Sci. Edication, vol. 9, no. 1, pp. 1–10, 2020.

[28] N. Tanaka, W. J. Ng, and K. B. S. N. Jinadasa, Wetlands for tropical applications: wastewater treatment by constructed wetlands. World Scientific, 2011.

[29] Irawanto, “Fitoremediasi Mengunakan Tumbuhan Akuatik Koleksi Kebun Raya Purwodadi,” Balai Konserv. Tumbuh. Kebun Raya Purwodadi, vol. 4, no. 1, pp. 1–12, 2016.

[30] Agrotek, “Klasifikasi dan Morfologi Tanaman Eceng Gondok,” www.agrotek.id, 2020. https://agrotek.id/klasifikasi-dan-morfologi-tanaman-eceng-gondok/ (accessed Mar. 27, 2021).

[31] A. Safarrida, . N., and J. Widada, “Fitoremediasi Kandungan Kromium Pada Limbah Cair Menggunakan Tanaman Air,” J. Bioteknol. Biosains Indones., vol. 2, no. 2, p. 55, 2015, doi: 10.29122/jbbi.v2i2.509.

[32] I. Nursari, N. Jafar, F. Nullah Yusuf, and M. S. Said, “Analisis Pengaruh Fase Tumbuh Tanaman Eceng Gondok Terhadap Kemampuan Fitoremediasi Cr6+ Pada Limbah Cair Pertambangan Nikel,” J. Geomine, vol. 7, no. 1, p. 23, 2019, doi: 10.33536/jg.v7i1.337.

[33] A. Setiyono and R. A. Gustaman, “Pengendalian Kromium (Cr) Yang Terdapat Di Limbah Batik Dengan Metode Fitoremediasi,” Unnes J. Public Heal., vol. 6, no. 3, p. 155, 2017, doi: 10.15294/ujph.v6i3.15754.

[34] U. R. Puspita, A. S. Siregar, and N. V. Hidayati, “Kemampuan Tumbuhan Air Sebagai Agen Fitoremediator Logam Berat Kromium (Cr) Yang Terdapat Pada Limbah Cair Industri Batik,” Berk. Perikan. Terubuk ISSN 0126-4265, vol. 39, no. 1, 2011.

[35] I. N. Hakim, “Pemanfaatan Eceng Gondok (Eichornia Crassipes) Sebagai Media Bioremediasi Terhadap Penurunan Kadar Total Suspended Suspended Solid (TSS),” Unnes J. Public Heal., vol. 1, no. 1, 2012.

[36] K. Y. Purnamawati, F. Peternakan, and U. Udayana, “Penurunan Kadar Rhodamin B Dalam Air Limbah,” vol. 9, no. 2, pp. 46–51, 2015.

[37] F. Hariyanti, Mifbakhudin, and U. Nurulita, “Efektifitas Subsurface Flow-Wetlands Dengan Tanaman Eceng Gondok Dan Kayu Apu Dalam Menurunkan Kadar COD dan TSS Pada Limbah Pabrik Saus,” 2016.

[38] F. Baroroh, “Fitoremediasi air tercemar tembaga (cu) menggunakan salvinia molesta dan pistia stratiotes serta pengaruhnya terhadap budidaya tanaman brassica rapa.” Universitas Brawijaya, 2017.

[39] S. Widodo, S. D, A. N, N. A, and B. A, “Treatment of Cr6 + using phytoremediation method in Rante Pond of PT Vale Indonesia Tbk.,” no. 93, 2009.

[40] P. Saha, O. Shinde, and S. Sarkar, “Phytoremediation of industrial mines wastewater using water hyacinth,” Int. J. Phytoremediation, vol. 19, no. 1, pp. 87–96, 2017, doi: 10.1080/15226514.2016.1216078.

[41] K. Swarnalatha and B. Radhakrishnan, “Studies on removal of Zinc and Chromium from aqueous solutions using water Hyacinth,” vol. 1, no. 2, pp. 193–202, 2015.

[42] Aquasabi, “Salvinia cucullata,” www.aquasabi.com, 2018. https://www.aquasabi.com/Salvinia-cucullata-Portion (accessed Mar. 27, 2021).

[43] A. Paramitasari, “Kemampuan Tumbuhan Air Kiapu Pistia Stratiotes dan Kiambang Salvinia Molesta Dalam Fitoremediasi Timbal Ami Paramitasari,” 2014.

[44] H. Prasetyo and C. Okik Hendriyanto, “Fitoremediasi Limbah Deterjen Menggunakan Kayu Apu (Pistia Stratiotes L.) Dan Genjer (Limnocharis Flava L.),” Envirotek J. Ilm. Tek. Lingkung., vol. 7, no. 2, pp. 100–114, 2015.

[45] M. Cahyani, P. Andarani, and B. Zaman, “Penurunan Konsentrasi Nikel (Ni) Total dan COD menggunakan Tumbuhan Kayu Apu (Pistia Stratiotes L) Pada Limbah Cair Elektroplating,” Tek. Lingkung. Unversitas Diponegoro, vol. 5, no. No 4, 2016.

[46] R. Rahadian, E. Sutrisno, and S. Sumiyati, “Efisiensi penurunan cod dan tss dengan fitoremediasi menggunakan tanaman kayu apu (,” J. Tek. Lingkung., vol. 6, no. 3, pp. 1–8, 2017.

[47] A. Rahmawati, Z. Badrus, and Purwono, “Kemampuan Tanaman Kiambang (Salvinia Molesta) Dalam Menyisihkan BOD dan Fosfat Pada Limbah Domestik (Grey Water) Dengan Sistem Fitoremediasi Secara Kontinyu,” J. Tek. Lingkung. Univ. Diponegoro, vol. 5, no. No 4, 2016.

[48] M. T. Fuad et al., “Hydrilla verticillata dalam Remediasi Logam Cu pada Limbah Elektroplating,” vol. 2, no. 1, 2013.

[49] S. U. Kalsum, A. Napoleon, and B. Yudono, “Efektivitas Eceng Gondok ( Eichhornia crassipes ), Hydrilla ( Hydrilla verticillata ), dan Rumput Payung ( Cyperus alterni- folius ) dalam Pengolahan Limbah Grey Water,” J. Penelit. Sains, vol. 17, no. No 1., pp. 20–25, 2014.

[50] M. M. Anam, E. Kurniati, and B. Suharto, “Penurunan Kandungan Logam Pb dan Cr Leachate Melalui Fitoremediasi Bambu Air (Equisetum Hyemale) dan Zeolit,” J. Keteknikan Pertan. Trop. dan Biosist., vol. 1, no. 2, pp. 43–59, 2013, [Online]. Available: http://jkptb.ub.ac.id/index.php/jkptb/article/view/118

[51] S. Indah, B. Hendrarto, and P. Soedarsono, “Kemampuan Eceng Gondok (Eichhornia sp.), Kangkung Air (Ipomea sp.), dan Kayu Apu (Pistia sp.) Dalam Menurunkan Bahan Organik Limbah Industri Tahu (Skala Laboratorium),” J. Manaj. Aquat. Resour., vol. 3, no. No. 1, pp. 1–6, 2014.

[52] I. Agusetyadevy, S. Sumiyati, and E. Sutrisno, “Fitoremediasi Limbah Yang Mengandung Timbal (Pb) Dan Kromium (Cr) Dengan Menggunakan Kangkung Air ( Ipomoea aquatica ) Imbar Agusetyadevy *) , Sri Sumiyati *) , Endro Sutrisno *),” J. Tek. Lingkung., vol. 2, pp. 1–8, 2013.

[53] F. Baroroh and R. Irwanto, “Fitoremediasi Air Limbah Domestik Di Kebun Raya Balai Konservasi Tumbuhan Kebun Raya Purwodadi - LIPI Tumbuhan akuatik memiliki berbagai macam manfaat selain digemari masyarakat sebagai tanaman hias , tumbuhan akuatik juga minyak , obat , bahan makanan ju,” 2016.

[54] O. K. L. Serang, E. Handayanto, and R. Rindyastuti, “Fitoremediasi Air Tercemar Logam Kromium dengan Menggunakan Sagittaria lancifolia dan Pistia stratiotes Serta Pengaruhnya Terhadap Pertumbuhan Kangkung Darat (Ipome areptans),” J. Tanah dan Sumberd. Lahan, vol. 5, no. 1, pp. 739–756, 2018, [Online]. Available: http://jtsl.ub.ac.id

[55] G. Lovell, “Lanceleaf arrowhead (Sagittaria lancifolia),” www.invasive.org, 2018. https://www.invasive.org/browse/detail.cfm?imgnum=5400830 (accessed Apr. 03, 2021).

[56] Imron, N. Sriyani, Dermiyati, E. Suroso, and S. B. Yuwono, “Fitoremediasi dengan Kombinasi Gulma Memperbaiki Kualitas Air Limbah Domestik Air untuk,” J. Ilmu L, vol. 17, no. 1, pp. 51–60, 2019, doi: 10.14710/jil.17.1.51-60.

[57] P. Sipayung, “Remediasi lahan tercemar logam berat limbah pertambangan,” Maj. Ilm. Methoda, vol. 2, pp. 67–82, 2012, [Online]. Available: http://ojs.lppmmethodistmedan.net/index.php/METHODA/article/view/33

[58] F. Nurfitriana, “Fitoremediasi Air Tercemar Timbal (Pb) Menggun Akan Tanaman Apu-Apu (Pistia Stratiotes) Dengan Sistem Kontinyu,” 2019.

[59] T. Juhaeti, H. N., and S. Hidayat, “Fitoremediasi kontaminasi merkuri: studi kasus upaya mengatasi pencemaran di lahan sawah yang tercemar merkuri penambangan emas rakyat,” pp. 595–607.

[60] M. Sholeh and G. Griyanitasari, “Kajian Fitoremediasi Kromium Dalam Limbah Penyamakan Kulit,” Pros. Semin. Nas. Kulit, Karet dan Plast. Ke-5, vol. 5, pp. 139–150, 2016.

[61] E. Handayanto, Y. Nuraini, N. Muddarsina, N. Syam, and A. Fiqri, Fitoremediasi dan Phytomining Logam Berat Pencemar Tanah, Cetakan Pe. Cetakan Pe.Malang: UB Press, 2017.

[62] J. Luo, W. He, S. Qi, J. Wu, and X. S. Gu, “A novel phytoremediation method assisted by magnetized water to decontaminate soil Cd based on harvesting senescent and dead leaves of Festuca arundinacea,” J. Hazard. Mater., vol. 383, no. August 2019, p. 121115, 2020, doi: 10.1016/j.jhazmat.2019.121115.

[63] S. N. Fitria, U. P. Juswono, and G. Saroja, “Potensi Tanaman Genjer (Limnocharis Flava) Untuk Mengurangi Kadar Logam Berat (Pb Dan Cu) Serta Radionuklida Dengan Metode Fitoremediasi.” Brawijaya University, 2014.

[64] N. Hidayati, “Fitoremediasi dan Potensi Tumbuhan Hiperakumulator,” HAYATI J. Biosci., vol. 12, no. 1, pp. 35–40, 2005, doi: 10.1016/S1978-3019(16)30321-7.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.