Characteristics of Nitrate Pollution in Shallow Groundwater on the South Slope of Mount Merapi, Yogyakarta, Indonesia

Restu Dwi Cahyo Adi, Wahyu Wilopo, Hendy Setiawan



Groundwater is the primary clean water source for most Indonesian society. The increasing use of groundwater is inevitable due to the rapid development in Indonesia, particularly in Yogyakarta. Shallow aquifers are vulnerable to contamination due to anthropogenic influences. Therefore, this research aims to determine shallow groundwater's physicochemical and chemical characteristics on the southern slope of Mount Merapi, specifically focusing on nitrate and chloride concentrations in groundwater. This research collected monthly data from eighteen dug wells or springs and rainfall data in the study area during the rainy and dry seasons from August 2022 to January 2023. The analyzing sample used argentometry to determine chloride concentration and ultraviolet spectrophotometric to determine nitrate concentration in Yogyakarta Environmental Health and Disease Control Technical Center (BBTKLPP) laboratory. The physicochemical parameters were tested directly in the field using Hanna instruments. The results indicate that a significant portion of shallow groundwater has high nitrate concentrations, corresponding to the growing settlements in the research area. Furthermore, according to the comparison graph between nitrate and chloride, the nitrate source was indicated as anthropogenic. Fecal matter from sanitation practices using septic tanks will likely influence the nitrate increase.


Mount Merapi; shallow groundwater; nitrate pollution; anthropogenic


[1] BPS Kabupaten Sleman, “Kabupaten Sleman dalam Angka 2021”, Wired, 2021, [Online]. Retrieved from

[2] W. Wilopo and D.P.E. Putra, “Groundwater recharge estimation using groundwater level fluctuation patterns in unconfined aquifer of Yogyakarta City, Indonesia,” Kuwait Journal of Science, vol. 48, no. 2, pp. 1–11, 2021, doi:10.48129/kjs.v48i2.9397.

[3] L. Kämpfner, T. R. Rüde, and D. P. E. Putra, “Characterization of shallow groundwater chemistry in the Yogyakarta basin, Central Java,” in IOP Conf. Series: Earth and Environmental Science, vol. 851, no.1, 2021, doi: 10.1088/1755-1315/851/1/012015.

[4] D. P. E. Putra, “Evolution of groundwater chemistry on shallow aquifer of Yogyakarta City urban area,” J. Appl. Geol., vol. 3, no. 2, pp. 116–124, 2015, doi: 10.22146/jag.7188.

[5] S. P. Sejati, “Potensi pencemaran air tanah bebas pada sebagian kawasan resapan air di Lereng Selatan Gunung Api Merapi,” Jurnal Pendidikan Geografi, vol. 25, no. 1, pp. 25–38, 2020, doi: 10.17977/um017v25i12020p025.

[6] United Nations, “17 Sustainable Development Goals (SDGs),” Wired, 2023, [Online]. Retrieved from:

[7] R. Gertisser, S. Charbonnier, J. Keller, and X. Quidelleur, “The geological evolution of Merapi volcano, Central Java, Indonesia,” Bulletin of Volcanology, vol. 74, no. 5, pp. 1213–1233, 2012, doi: 10.1007/s00445-012-0591-3.

[8] D. P. E. Putra, M. Iqbal, H. Hendrayana, and T. T. Putranto, “Assessment of Optimum Yield of Groundwater Withdrawal in the Yogyakarta City, Indonesia,” Journal of Applied Geology, vol. 5, no. 1, pp. 41–49, 2013, doi: 10.22146/jag.7206.

[9] T. Listyani, “Hidrokimia Airtanah Daerah Tlogoadi, Mlati, Sleman. in Seminar Nasional Riset dan Teknologi Terapan (RiTekTra) ke-4, 2014.

[10] R. S. Nugraha and D. P. E. Putra, “Hidrokimia dan Indikasi Kontaminasi pada Air Tanah Di Lereng Selatan Gunung Merapi, Mlati dan Sekitarnya, Sleman, D.I.Yogyakarta. Jurnal RISET Geologi dan Pertambangan, vol. 29, no .2, pp. 215–226, 2019, doi: 10.14203/risetgeotam2019.v29.1027.

[11] J. Boulom, D. P. E. Putra, and W. Wilopo, “Chemical Composition and Hydraulic Connectivity of Springs in the Southern Slope of Merapi Volcano,” J. SE Asian Appl. Geol., vol. 6, no. 1, pp. 1–11, 2014, doi: 10.22146/jag.7212.

[12] A. R. Lawrence, D. M. J. Macdonald, A. G. Howard, M. H. Barrett, S. Pedley, K. M. Ahmed, and M. Nalubega, “Guidelines for Assessing the Risk to Groundwater from On-site Sanitation,” British Geological Survey Commissioned Report CR/01/142, 2001.

[13] S. D. S. Putro and W. Wilopo, “Assessment of nitrate contamination and its factors in the urban area of Yogyakarta, Indonesia,” Journal of Degraded and Mining Lands Management, vol. 9, no. 4, pp. 3643–3652, 2022, doi: 10.15243/jdmlm.2022.094.3643.

[14] D. P. E. Putra, The Impact of Urbanization on Groundwater Quality: A Case Study in Yogyakarta City – Indonesia, RWTH Aachen University, Aachen, 2007, 147.

[15] W. Wilopo, D. P. E. Putra, and H. Hendrayana, “Impacts of precipitation, land use change and urban wastewater on groundwater level fluctuation in the Yogyakarta-Sleman Groundwater Basin, Indonesia,” Environ. Monit. Assess., vol. 193, no. 2, 2021, doi: 10.1007/s10661-021-08863-z.

[16] WHO, Guidelines for Drinking-water Quality, 4th edition, World Health Organization, Geneva, 2017.

[17] Menteri Kesehatan Republik Indonesia. (2010). “Peraturan Menteri Kesehatan Republik Indonesia Nomor 492/MENKES/PER/1V/2010 tentang Persyaratan Kualitas Air Minum”, Wired, 19 April 2010, [Online]. Retrieved from:

[18] M. Handayani, D. D. Rahayu, F. Azizah, Ikrila, I. T. Faradila, R. Nabilah, and Sulistiyorini, “Analisis Risiko Kesehatan Lingkungan Kandungan Nitrat Pada Air Sumur Warga Kota Depok,” Jurnal Sanitasi Lingkungan, vol .2, no. 1, 2022, doi: 10.36086/jsl.v2i1.1143.


  • There are currently no refbacks.

Google Scholar Logo SINTA Logo Logo GARUDA

Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.