Magmatic Evolution of Dago Volcano, West Java, Indonesia

Tyto Baskara Adimedha, Agung Harijoko, Esti Handini, I Gde Sukadana, Heri Syaeful, Roni Cahya Ciputra, Ilsa Rosianna, Frederikus Dian Indrastomo, Fadiah Pratiwi, Yoshi Rachael



Dago Volcano is a product of Miocene Sunda Arc volcanism located southeast of the capital city of Jakarta. The morphological change from flat lava flow to steeper lava morphology implies a process of magma evolution under Dago Volcano. This research provides an overview of the magma evolution that occurs on this volcano. The methods used include volcanostratigraphic analysis, petrographic analysis, mineral chemistry, and whole-rock geochemistry. The volcanostratigraphy of Dago Volcano is composed of two eruption centers and a flank eruption forming lava and cinder cones products. The mineralogical associations of Dago Volcano products include plagioclase, olivine, and clinopyroxene. The mineral textures of Dago edifices show zoning, sieve, and reaction rims textures. Geochemically, the Dago Volcano product has a magma affinity of med-K calc-alkaline with quite high levels of MgO, Ni, and Cr approaching the characteristics of primitive magma. The magma evolution process of Dago Volcano includes fractional crystallization and magma mixing which originates from the same magma source.


Dago Volcano; magmatic evolution; primitive magma; volcanostratigraphy

Full Text:



[1] J. A. Katili, “Volcanism and plate tectonics in the Indonesian island arcs,” Tectonophysics, vol. 26, no. 3–4, pp. 165–188, 1975, doi: 10.1016/0040-1951(75)90088-8.

[2] W. B. Hamilton, “Tectonics of the Indonesian region,” 1979.

[3] J. C. Carlile and A. H. G. Mitchell, “Magmatic arcs and associated gold and copper mineralization in Indonesia,” Journal of Geochemical Exploration, vol. 50, no. 1–3, pp. 91–142, 1994, doi: 10.1016/0375-6742(94)90022-1.

[4] B. Clements and R. Hall, “Cretaceous to Late Miocene stratigraphic and tectonic evolution of West Java,” in PROCEEDINGS INDONESIAN PETROLEUM ASSOCIATION Thirty-First Annual Convention and Exhibition, 2007, no. May, doi: 10.29118/ipa.1520.07.g.037.

[5] R. Sukamto, Peta Geologi Lembar Jampang dan Balekambang. Bandung: Pusat Penelitian dan Pengembangan Geologi, 1975.

[6] E. T. Suhaeli, Said E L, Siswoyo, and S. Prijomarsono, “The status of the melange complex in Ciletuh area, South-West Java,” in Proceedings Indonesian Petroleum Association 6th Annual Convention, 1977, no. May, pp. 241–253, doi: 10.29118/ipa.1493.241.253.

[7] T. Turkandi, Sidarto, D. A. Agustiyanto, and M. M. P. Hadiwidjoyo, Peta Geologi Lembar Jakarta dan Kepulauan Seribu, Jawa. Bandung, 1992.

[8] L. D. Setijadji, S. Kajino, A. Imai, and K. Watanabe, “Cenozoic island arc magmatism in Java Island (Sunda Arc, Indonesia): Clues on relationships between geodynamics of volcanic centers and ore mineralization,” Resource Geology, vol. 56, no. 3, pp. 267–292, 2006, doi: 10.1111/j.1751-3928.2006.tb00284.x.

[9] H. Susiati, Yuliastuti, H. Syaiful, I. G. Sukadana, and E. E. Al Hakim, “Site and environmental evaluation in RDE location, Puspiptek, Serpong, Indonesia,” AIP Conference Proceedings, vol. 2180, no. December, 2019, doi: 10.1063/1.5135549.

[10] R. W. van Bemmelen, “The Geology of Indonesia. General Geology of Indonesia and Adjacent Archipelagoes,” Government Printing Office, The Hague. pp. 1–766, 1949.

[11] Komisi Sandi Stratigrafi Indonesia, Sandi Stratigrafi Indonesia. Jakarta: Ikatan Ahli Geologi Indonesia, 1996.

[12] M. C. Gerbe, A. Gourgaud, O. Sigmarsson, R. S. Harmon, J. L. Joron, and A. Provost, “Mineralogical and geochemical evolution of the 1982-1983 Galunggung eruption (Indonesia),” Bulletin of Volcanology, vol. 54, no. 4, pp. 284–298, 1992, doi: 10.1007/BF00301483.

[13] S. A. Carn and D. M. Pyle, “Petrology and geochemistry of the Lamongan volcanic field, East Java, Indonesia: Primitive Sunda arc magmas in an extensional tectonic setting?,” Journal of Petrology, vol. 42, no. 9, pp. 1643–1683, 2001, doi: 10.1093/petrology/42.9.1643.

[14] M. J. Le Bas, R. W. Le Maitre, A. Streckeisen, and B. Zanettin, “A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram,” Journal of Petrology, vol. 27, no. 3, pp. 745–750, Jun. 1986, doi: 10.1093/petrology/27.3.745.

[15] J. B. Gill, “Bulk chemical composition of orogenic andesites,” in Orogenic Andesites and Plate Tectonics, Springer, 1981, pp. 97–167.

[16] Y. Tatsumi and S. Eggins, Subduction zone magmatism, vol. 1. Wiley, 1995.

[17] M. Wilson, Igneous Petrogenesis: A Global Tectonic Approach, vol. 13, no. 1. Springer, 1989.

[18] M. L. Renjith, “Micro-textures in plagioclase from 1994-1995 eruption, Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone,” Geoscience Frontiers, vol. 5, no. 1, pp. 113–126, 2014, doi: 10.1016/j.gsf.2013.03.006.

[19] D. Perugini, T. Busà, G. Poli, and S. Nazzareni, “The role of chaotic dynamics and flow fields in the development of disequilibrium textures in volcanic rocks,” Journal of Petrology, vol. 44, no. 4, pp. 733–756, 2003, doi: 10.1093/petrology/44.4.733.


  • There are currently no refbacks.

Google Scholar Logo SINTA Logo Logo GARUDA

Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.