Volcanic Ash Fall Hazard of Mount Merapi on Yogyakarta Nuclear Area

Abimanyu Bondan Wicaksono Setiaji, Iman Satyarno, Agung Harijoko

DOI: http://dx.doi.org/10.55981/eksplorium.2022.6708

Abstract


The existence of nuclear installations in the Yogyakarta Nuclear Area is vulnerable to the eruption of Mount Merapi, the most active volcano in Indonesia. Tephra hazard has the potential to threaten the operational activities of nuclear installations in the Yogyakarta Nuclear Area; thus, it is necessary to analyze the distribution and potential hazard of volcanic ash from Mount Merapi for future eruptions. Numerical modelling is used in analyzing tephra distribution using TEPHRA2 software with parameters of the 2010 Mount Merapi eruption, which is then visualized to isomass and isopach maps of tephra distribution. The analysis resulted in the ash dispersion leading to the Yogyakarta Nuclear Area in April, May, June, and August with an accumulated mass of 20-50 kg/m3 with a thickness of 0.2-12 cm. It is necessary to deal with volcanic ash hazards such as roof strength, secondary cooling system, filtering system, and electrical system for several installations in the Yogyakarta Nuclear Area.

Keywords


Merapi, tephra hazard, nuclear area

References


[1] BAPETEN, Perka BAPETEN tentang Keselamatan Operasi Reaktor Non Daya. Indonesia, 2019.

[2] BAPETEN, Perka BAPETEN tentang Evaluasi Tapak instalasi Nuklir Aspek Kegunungapian. Jakarta: jdih.bapeten.go.id, 2015.

[3] IAEA, SSR-3 Safety of Research Reactors, no. May. Viena, Austria, 2016.

[4] D. S. Sayudi, N. A, D. Djalal, and M. Muzani, “Peta Kawasan Rawan Bencana Gunung Merapi,” Bandung, 2010.

[5] C. Bonadonna and A. Costa, “Estimating the volume of tephra deposits: A new simple strategy,” Geology, vol. 40, no. 5, pp. 415–418, 2012, doi: 10.1130/G32769.1.

[6] A. M. Sarna-Wojcicki, S. Shipley, R. B. Waitt, D. Dzurisin, and S. H. Wood, “Areal distribution, thickness, mass, volume and grain size of air- fall ash from the six major eruptions (of Mount St. Helens) of 1980.,” U.S. Geol. Surv. Prof. Pap., vol. 1250, pp. 577–600, 1981.

[7] I. Satyarno, “Rumah Dome sebagai Bangunan Alternatif pada Daerah Rawan Bencana Gunung Berapi,” 2011.

[8] R. J. Blong et al., “Estimating building vulnerability to volcanic ash fall for insurance and other purposes,” J. Appl. Volcanol., pp. 1–13, 2017, doi: 10.1186/s13617-017-0054-9.

[9] F. Akbar, “Model Atap Rumah yang Tanggap terhadap Abu Pasir Vulkanik,” Universitas Brawijaya, 2014.

[10] S. F. Jenkins, R. J. S. Spence, J. F. B. D. Fonseca, R. U. Solidum, and T. M. Wilson, “Volcanic risk assessment : Quantifying physical vulnerability in the built environment,” J. Volcanol. Geotherm. Res., vol. 276, pp. 105–120, 2014, doi: 10.1016/j.jvolgeores.2014.03.002.

[11] J. B. Wardman, T. Wilson, J. Cole, P. S. Bodger, and D. M. Jhonston, “Quantifying the Vulnerability of High Voltage Power Transmission Systems to Volcanic Ashfall Hazards,” 2010.

[12] T. Wilson, M. Daly, and D. Johnston, “Review of Impacts of Volcanic Ash on Electricity Distribution Systems, Broadcasting and Communication Networks,” Auckland, 2009.

[13] T. M. Wilson et al., “Volcanic ash impacts on critical infrastructure,” Phys. Chem. Earth, vol. 45–46, pp. 5–23, 2011, doi: 10.1016/j.pce.2011.06.006.

[14] S. Shipley and A. M. Sarna-Wojcicki, “Distribution, Thickness, and Mass of Late Pleistocene and Holocene Tephra From Major Volcanoes In The Northwestern United States: A Preliminary Assesment of Hazard From Volcanic Ejacta to Nuclear Reactors In The Pacific Northwest,” 1980.

[15] L. Courtland, C. Connor, L. Connor, and C. Bonadonna, “Introducing Geoscience Students to Numerical Modeling of Volcanic Hazards: The example of Tephra2 on VHub.org,” Numeracy, vol. 6, no. 2, 2012, doi: 10.5038/1936-4660.5.2.6.

[16] T. Suzuki, “A Theoretical Model for Dispersion of Tephra,” Arc Volcanism; Phys. Tectonics, pp. 95–113, 1983.

[17] Bonadonna, “Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function,” Bull. Volcanol., vol. 75, no. 8, pp. 1–19, 2013, doi: 10.1007/s00445-013-0742-1.

[18] J. S. Pallister et al., “Merapi 2010 eruption-Chronology and extrusion rates monitored with satellite radar and used in eruption forecasting,” J. Volcanol. Geotherm. Res., vol. 261, pp. 144–152, 2013, doi: 10.1016/j.jvolgeores.2012.07.012.

[19] J. F. Newman and P. M. Klein, “The Impacts of Atmospheric Stability on the Accuracy of Wind Speed Extrapolation Methods,” Resources, vol. 3, pp. 81–105, 2014, doi: 10.3390/resources3010081.

[20] Sunarko, “Jurnal Pengembangan Energi Nuklir Kajian Probabilistik Jatuhan Abu Vulkanik Terhadap Tapak Pembangkit Listrik Tenaga Nuklir ( PLTN ) Muria,” J. Pengemb. Energi Nukl., vol. 18, no. 1, pp. 49–57, 2016.

[21] L. D. Setiadji, J. Jane, N. G. Situmorang, and A. Wiguna, “Erupsi merapi 2018: interpretasi jenis erupsi berdasarkan studi material vulkanik hasil erupsi eksplosif 11 mei dan 1 juni 2018,” in Seminar Nasional Kebumian Ke-11, 2018, no. September, pp. 908–917.

[22] Surono et al., “The 2010 explosive eruption of Java’s Merapi volcano-A ‘100-year’ event,” J. Volcanol. Geotherm. Res., vol. 241–242, pp. 121–135, 2012, doi: 10.1016/j.jvolgeores.2012.06.018.

[23] BAPETEN, “Laporan Keselamatan Nuklir 2009,” Jakarta, 2010.

[24] PSTA BATAN, “Rencana Kontinjensi Reaktor Kartini,” Yogyakarta, 2016. [Online]. Available: https://bnpb.go.id/rencana-kontigensi/rencana-kontigensi-sikka.

[25] PSTA BATAN, “Laporan Analisis Keselamatan Reaktor Kartini,” Yogyakarta, 2019.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.