Tectonic Pattern Imaging of Southern Sumatra Region Using Double Difference Seismic Tomography

Akmal Firmansyah, Wandono Wandono, Mohamad Ramdhan

DOI: http://dx.doi.org/10.55981/eksplorium.2022.6603


Southern Sumatra and its surroundings are close to the contact zone of the Indo-Australian plate and Eurasian plate, so the area always relates to the high seismicity zone. The Sumatran subduction zone, the Mentawai fault, and several segments of the Sumatran fault drive seismic activities in the area. Tectonic settings are essential to understanding the area's source and hazard. This understanding can be obtained using the relocated hypocenter distribution and the 3D velocity model in the area. Relocated hypocenters and velocity models are obtained from simultaneous inversion from the BMKG earthquake catalog in January 2012-December 2020 using the double difference seismic tomography method. Seismic velocity inversion of P- and S- wave tomograms image the thermal zone beneath Dempo and Patah volcanoes at a depth of 30-50 km. Slab dehydration is also observed in several forearc high zone. Both phenomena are associated with negative anomalies. The Sumatran and Mentawai fault zones are marked between negative and positive anomalies on the contact zone. The subducted slab of the Indo-Australian plate is observed until a depth of 150 km, which is the maximum depth of nodes used in this study. The granitic basement beneath Anak Krakatau volcano is detected until 10 km. Two of those geological features are related to positive anomalies.


tomografi seismik; double difference; Sumatera bagian Selatan

Full Text:



[1] K. Sieh and D. Natawidjaja, “Neotectonics of the Sumatran fault, Indonesia,” J. Geophys. Res. Solid Earth, vol. 105, no. B12, pp. 28295–28326, 2000, doi: 10.1029/2000jb900120.

[2] PuSGeN, Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Bandung: Pusat Penelitian dan Pengembangan Perumahan dan Permukiman Badan Penelitian dan Pengembangan Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2017.

[3] R. Maneno and B. J. Santosa, “3d seismic velocity structure imaging beneath Flores region using local earthquake tomography,” J. Phys. Conf. Ser., vol. 1245, no. 1, 2019, doi: 10.1088/1742-6596/1245/1/012012.

[4] B. L. N. Kennett, E. R. Engdahl, and R. Buland, “Constraints on seismic velocities in the Earth from traveltimes,” Geophys. J. Int., vol. 122, no. 1, pp. 108–124, 1995, doi: 10.1111/j.1365-246X.1995.tb03540.x.

[5] H. Zhang and C. H. Thurber, “Double-difference tomography: The method and its application to the Hayward Fault, California,” Bull. Seismol. Soc. Am., vol. 93, no. 5, pp. 1875–1889, 2003, doi: 10.1785/0120020190.

[6] J. Um and C. Thurber, “A Fast Algorithm for Two-Point Seismic Ray Tracing,” Bull. Seismol. Soc. Am., vol. 77, no. June, pp. 972–986, 1987.

[7] F. Waldhauser and W. L. Ellsworth, “A Double-difference Earthquake location algorithm: Method and application to the Northern Hayward Fault, California,” Bull. Seismol. Soc. Am., vol. 90, no. 6, pp. 1353–1368, 2000, doi: 10.1785/0120000006.

[8] D. R. Toomey and G. R. Foulger, “Tomographic inversion of local earthquake data from the Hengill-Grensdalur Central Volcano Complex, Iceland,” J. Geophys. Res. Solid Earth, vol. 94, no. B12, pp. 17497–17510, 1989.

[9] H. Zhang and C. Thurber, “Development and applications of double-difference seismic tomography,” Pure Appl. Geophys., vol. 163, no. 2–3, pp. 373–403, 2006, doi: 10.1007/s00024-005-0021-y.

[10] G. P. Hayes dkk., “Slab 2, a comprehensive subduction zone geometry model,” Science (80-. )., vol. 362, no. October, pp. 58–61, 2018.

[11] S. Liu, I. Suardi, X. Xu, S. Yang, and P. Tong, “The Geometry of the Subducted Slab Beneath Sumatra Revealed by Regional and Teleseismic Traveltime Tomography,” J. Geophys. Res. Solid Earth, vol. 126, pp. 29, 2021, [Daring]. Tersedia pada: https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2020JB020169.

[12] S. Rosalia, S. Widiyantoro, A. D. Nugraha, and P. Supendi, “Double-difference tomography of P- and S-wave velocity structure beneath the western part of Java, Indonesia,” Earthq. Sci., vol. 32, no. 1, pp. 12–25, 2019, doi: 10.29382/eqs-2019-0012-2.

[13] K. Jaxybulatov dkk., “Evidence for high fluid/melt content beneath Krakatau volcano (Indonesia) from local earthquake tomography,” J. Volcanol. Geotherm. Res., vol. 206, no. 3–4, pp. 96–105, 2011, doi: 10.1016/j.jvolgeores.2011.06.009.

[14] M. Ramdhan, S. Kristyawan, A. S. Sembiring, D. Daryono, and P. Priyobudi, “Struktur Kecepatan Seismik di Bawah Gunung Merapi dan Sekitarnya Berdasarkan Studi Tomografi Seismik Waktu Tempuh,” Ris. Geol. dan Pertamb., vol. 29, no. 2, pp. 227–238, 2019, doi: 10.14203/risetgeotam2019.v29.1047.

[15] R. D. Hyndman and S. M. Peacock, “Serpentinization of the forearc mantle,” Earth Planet. Sci. Lett., vol. 212, pp. 417–432, 2003, doi: 10.1016/S0012-821X(03)00263-2.

[16] T. Lestari and A. D. Nugraha, “Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method,” AIP Conf. Proc., vol. 1658, no. 2015, 2015, doi: 10.1063/1.4915022.

[17] D. Lange, F. Tilmann, T. Henstock, A. Rietbrock, D. Natawidjaja, and H. Kopp, “Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network,” Solid Earth, vol. 9, no. 4, pp. 1035–1049, 2018, doi: 10.5194/se-9-1035-2018.


  • There are currently no refbacks.

Google Scholar Logo SINTA Logo Logo GARUDA

Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.