Karakterisasi Geoteknik Fondasi Kandidat Tapak PLTN dengan Metode Seismik Refraksi
DOI: http://dx.doi.org/10.55981/eksplorium.2021.6538
Abstract
ABSTRAK. Pemerintah Indonesia dalam Peraturan Presiden (Perpres) Nomor 38 Tahun 2018 tentang Rencana Induk Riset Nasional Tahun 2017–2045, menetapkan beberapa bidang utama yang akan menjadi prioritas penelitian nasional, salah satunya adalah bidang energi. Dalam tema riset teknologi kelistrikan berbasis energi baru dan terbarukan rendah/nol karbon terdapat topik riset teknologi Pembangkit Listrik Tenaga Nuklir (PLTN) skala komersial. Pada topik riset tersebut, ditetapkan bahwa dalam jangka waktu penelitian tahun 2020–2024, dihasilkan purwarupa PLTN. Pada penelitian ini, karakterisasi geoteknik tapak PLTN dilakukan dengan menggunakan metode seismik refraksi guna melengkapi data penelitian sebelumnya. Tujuan penelitian ini adalah untuk mengetahui profil perlapisan batuan bawah permukaan untuk estimasi pekerjaan terkait fondasi PLTN. Pemetaan geologi dan akuisisi data geofisika, pengolahan, serta interpretasi tanah/batuan berdasarkan parameter kecepatan gelombang kompresi (Vp). Hasil pemetaan geologi menunjukkan adanya 2 satuan batuan beku yaitu diorit kuarsa dan andesit. Hasil pengolahan dan interpretasi data seismik refraksi menghasilkan model penampang Vp pada lapisan batuan bawah permukaan. Terdapat 3 lapisan batuan di lokasi penelitian yaitu lapisan tanah (Vp = 361–715 m/s), lapisan batuan beku lapuk (Vp = 1.386–2.397 m/s), dan lapisan beku segar (Vp = 3.789–6.133 m/s). Perkiraan densitas batuan beku segar berdasarkan perhitungan adalah 2,43–2,74 g/cm3. Hasil pemodelan dapat menunjukkan kedalaman dan struktur bawah permukaan lapisan batuan beku segar yang dapat menjadi fondasi bangunan PLTN.
ABSTRACT. Presidential Regulation (Perpres) number 38 of 2018 concerning the National Research Master Plan for 2017–2045, the Government of Indonesia establishes several main areas that will become national research priorities, one of which is the energy sector. In the research theme of electricity technology based on new and renewable low/zero carbon energy, there is the topic of research on commercial-scale Nuclear Power Plant (NPP) technology. On the research topic, it was determined that within the research period of 2020–2024, a prototype nuclear power plant would be produced. Research related to the geotechnical characterization of the nuclear power plant site using the seismic refraction method was carried out to complement the previous research data. The purpose of this study was to determine the subsurface rock layer profile for estimation of work related to nuclear power plant foundations. Geological mapping and geophysical data acquisition, processing, as well as soil/rock interpretation based on the compression wave velocity (Vp) parameter are carried out to achieve this goal. The results of geological mapping show that there are 2 igneous rock units, namely quartz diorite and andesite. The results of processing and interpreting seismic refraction data produced a cross-sectional model of Vp in the subsurface rock layers. There are 3 rock layers in the research location, namely soil layer (Vp = 361–715 m/s), weathered igneous rock layer (Vp = 1.386–2,396 m/s), and fresh igneous layer (Vp = 3.789–6.133 m/s). The estimated density of fresh igneous rock based on calculations is 2.43–2.74 g/cm3. The modeling results can show the depth and structure of the subsurface layer of fresh igneous rock that can be the foundation of nuclear power plants.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
[1] H. Susiati, I. G. Sukadana, Y. S. Budi Susilo, and Y. Yuliastuti, “Land Suitability Determination of NPP’s Potential Site in East Kalimantan Coastal Using GIS,” J. Pengemb. Energi Nukl., vol. 21, no. 1, p. 53, 2019.
[2] H. Suntoko, “Identifikasi Daerah Interes Calon Tapak Pltn Kalimantan Barat Berdasarkan Kriteria Umum,” Eksplorium Bul. Pus. Teknol. Bahan Galian Nukl., vol. 35, no. 1, pp. 57–68, 2014.
[3] H. Susiati, “Penentuan Tapak Potensial PLTN dengan Metode SIG di Wilayah Pesisir Propinsi Kalimantan Barat,” J. Pengemb. Energi Nukl., vol. 16, no. 2, pp. 131–142, 2014.
[4] E. E. Alhakim, H. Susiati, and Sunarko, “Analisis Spasial Awal Lokasi Calon Tapak PLTN di Kalimantan Barat,” Pros. Semin. Nas. Infrastruktur Energi Nukl., pp. 173–179, 2019.
[5] I. Bastori and Sriyana, “Analisis Risiko Proyek PLTN Kalbar dengan Pendekatan Model AHP dan PMBOK,” J. Pengemb. Energi Nukl., vol. 22, no. 1, pp. 39–44, 2020.
[6] N. Herawati and A. D. Sudagung, “Persepsi Masyarakat dan Potensi Public Acceptance Terkait Wacana Pembangunan PLTN di Kabupaten Bengkayang,” J. Pengemb. Energi Nukl., vol. 22, no. 2, p. 111, 2020.
[7] F. N. Hussein et al., “Potensi Bahaya Gunung Api Terhadap Calon Tapak PLTN, Studi Kasus: Gunung Api Semadum, Kalimantan Barat,” J. Pengemb. Energi Nukl., vol. 22, no. 2, p. 89, 2020.
[8] H.- Priyanto, M.- Mudjiono, and S.- Yosomulyono, “Koreksi Geometrik Pemetaan Tataguna Lahan di Sekitar Calon Tapak PLTN Kalimantan Barat,” J. Pengemb. Energi Nukl., vol. 23, no. 1, p. 61, 2021.
[9] M.- Mudjiono, S. Alimah, and H. Susiati, “Identifikasi Perubahan Tataguna Lahan di Sekitar Calon Tapak PLTN Kabupaten Bengkayang, Kalimantan Barat,” J. Pengemb. Energi Nukl., vol. 22, no. 2, p. 101, 2020.
[10] A. M. Abudeif, A. E. Raef, A. A. Abdel Moneim, M. A. Mohammed, and A. F. Farrag, “Dynamic Geotechnical Properties Evaluation of a Candidate Nuclear Power Plant Site (NPP): P- and S-Waves Seismic Refraction Technique, North Western Coast, Egypt,” Soil Dyn. Earthq. Eng., vol. 99, no. May, pp. 124–136, 2017.
[11] S. Shebl, K. S. Gemail, M. Attwa, S. A. Soliman, A. Azab, and M. H. Farag, “Utilizing shallow seismic refraction in defining the geotechnical properties of the foundation materials: A case study at New Minia City, Nile Valley, Egypt,” Egypt. J. Pet., vol. 28, no. 2, pp. 145–154, 2019.
[12] A. M. E. Mohamed, A. S. A. Abu El Ata, F. Abdel Azim, and M. A. Taha, “Site-specific shear wave velocity investigation for geotechnical engineering applications using seismic refraction and 2D multi-channel analysis of surface waves,” NRIAG J. Astron. Geophys., vol. 2, no. 1, pp. 88–101, 2013.
[13] M. H. Khalil and S. M. Hanafy, “Engineering applications of seismic refraction method: A field example at Wadi Wardan, Northeast Gulf of Suez, Sinai, Egypt,” J. Appl. Geophys., vol. 65, no. 3–4, pp. 132–141, 2008.
[14] Geogiga Technology Corp., Refractor 8.3 User Guide. Alberta, Canada, 2017.
[15] D. Palmer, “An introduction to the generalized reciprocal method of seismic refraction interpretation.,” Geophysics, vol. 46, no. 11, pp. 1508–1518, 1981.
[16] P. Mielke, K. Bär, and I. Sass, “Determining the relationship of thermal conductivity and compressional wave velocity of common rock types as a basis for reservoir characterization,” J. Appl. Geophys., vol. 140, no. October, pp. 135–144, 2017.
[17] N. Suwarna and R. Langford, Peta Geologi Lembar Singkawang, Kalimantan. Bandung: P3G ESDM, 1993.
[18] A. L. Streckeisen, “IUGS Subcommission on the Systematics of Igneous Rocks: Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites and Melilite Rocks: Recommendations and Suggestions,” Neues Jahrb. fur Mineral. Abhandlungen, vol. 141, pp. 1–14, 1978.
[19] G. H. F. Gardner, L. W. Gardner, and A. R. Gregory, “Formation Velocity and Density - The Diagnostic Basics for Stratigraphic Traps,” Geophysics, vol. 39, pp. 770–780, 1974.
Refbacks
- There are currently no refbacks.
Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)
National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.