Review on Granitic Rocks in Sumatra: Intrusion Process, Classification, Mineralization, and Potential Uses

Ronaldo Irzon, Heri Syaeful, Aries Kusworo, Joko Wahyudiono, Ngadenin Ngadenin



Granitic rocks are widely distributed in Sumatra and surrounding areas. These granitoids are classified into several granite provinces of Southeast Asia with different intrusion processes and specific characteristics. This paper aims to review the intrusion of granitic rocks in Sumatra and describe the opportunities associated with it. Granite rocks are used to manufacture cultural heritage, works of art, and ornaments because of their weathering resistance, color diversity, and hardness characters. S-type granite intrusion in Sumatra might be associated with tin mineralization while silver-gold with the I-type. Theoretically, granite contains more REE than other igneous rocks. Mining and extraction difficulties complicate the direct REE exploitation from fresh granite. A-type granite relatively contains more REE than the other types, but this type of granite is not correlated with certain provinces. Indonesia has a tropical climate which is prone to weathering. Therefore, it is possible for REE and/or bauxite enrichments in the granite weathering horizon. Granite is assumed to be a potential source of uranium and thorium, especially for the S-type, because it is formed through the compression of sediments that can absorb these radioactive elements from the continental crust.


Sumatra; granite; classification; mineralization

Full Text:



[1] I. Metcalfe, I., “Tectonic Evolution of the Malay Peninsula,” Journal of Asian Earth Sciences, vol. 76, pp. 195-213, 2013.

[2] A. Swastikawati, A. Gunawan, and Y. Atmaja, “Kajian Konservasi Tinggalan Megalitik di Lore, Sulawesi Tengah,” Jurnal Konservasi Cagar Budaya: Borobudur, vol. 8, no. 1, pp. 17-37, 2014.

[3] A. Momeni, G. R. Khanlari, M. Heidari, R. Bagheri, and E. Bazvand, “Assessment of Physical Weathering Effects on Granitic Ancient Monuments, Hamedan, Iran,” Environmental earth sciences, vol. 74, no. 6, pp. 5181-5190, 2015.

[4] D. M. Freire-Lista, R. Fort, and M. J. Varas-Muriel, “Alpedrete Granite (spain). A Nomination for the ‘Global Heritage Stone Resource’ Designation,” Episodes, vol. 38, no. 2, pp. 106-113, 2015.

[5] H. Okhovat and M. R. Pourjafar, “Investigating the Effects of Persian Architecture Principals on Traditional Buildings and Landscapes in Kashmir,” Historic Preservation, vol. 39, pp. 4832-4835, 2011.

[6] A. F. Abyyusa and S. Aly, “Lawang Sewu’s Monumentality Architecture,” Riset Arsitektur, vol. 3, no. 02, pp. 105-120, 2019.

[7] P. L. Blevin and B. W. Chappell, “Chemistry, Origin, and Evolution of Mineralized Granites in the Lachlan Fold Belt, Australia; the Metallogeny of I-and S-type Granites,” Economic Geology, vol. 90, no. 6, pp. 1604-1619, 1995.

[8] A. Imai, “Genesis of the Mamut Porphyry Copper Deposit, Sabah, East Malaysia”, Resource Geology, vol. 50, no. 1, pp. 1-23, 2000.

[9] H. Rahmi, Asrul, and Akmam, ”Penyelidikan Jenis Mineral di Jorong Koto Baru Nagari Aie Dingin Kabupaten Solok dengan Metode Geolistrik Induced Polarization (IP),” Pillar of Physics, vol. 6, no. 2, 2015.

[10] I. Setiawan, R. Takahashi, and A. Imai, “Petrochemistry of Granitoids in Sibolga and its Surrounding Areas, North Sumatra, Indonesia,” Resource Geology, vol. 67, no. 3, pp. 254-278, 2017.

[11] E. H. Christiansen and J. D. Keith, “Trace Element Systematics in Silicic Magmas: a Metallogenic Perspective,” Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration, Geological Association of Canada, Short Course Notes, vol. 12, pp. 115-151, 1996.

[12] J. Foden, P. A. Sossi, and C. M. Wawryk, “Fe Isotopes and the Contrasting Petrogenesis of A-, I-and S-type Granite,” Lithos, vol. 212, pp. 32-44, 2015.

[13] Rohmana, “Tinjauan Pengembangan Sumber Daya Bauksit dan Bahan Galian Lain di Daerah Bintan Selatan,” Buletin Sumber Daya Geologi, vol. 3, no.1, pp. 33-40, 2008.

[14] K. Sanematsu, Y. Kon, A. Imai, K. Watanabe, and Y. Watanabe, “Geochemical and Mineralogical Characteristics of Ion-adsorption Type REE Mineralization in Phuket, Thailand,” Mineralium Deposita, vol. 48, no. 4, pp. 437-451, 2011.

[15] J. Kynicky, M.P. Smith, and C. Xu, “Diversity of Rare Earth Deposits: the Key Example of China,” Elements, vol. 8, no. 5, pp. 361-367, 2012.

[16] E. Mouchos, F. Wall, B. J. Williamson, and B. Palumbo-Roe, “Easily Leachable Rare Earth Element Phases in the Parnassus-Giona Bauxite Deposits, Greece,” Bulletin of the Geological Society of Greece, vol. 50, no. 4, pp. 1952-1958, 2016.

[17] C. Xu, J. Kynický, M. P. Smith, A. Kopriva, M. Brtnický, T. Urubek, Y. Yang, Z. Zhao, C. He, and W. Song, “Origin of Heavy Rare Earth Mineralization in South China,” Nature Communications, vol. 8, p. 14598, 2017.

[18] R. Irzon, “Limbah Pencucian Bauksit Sebagai Sumber Unsur Tanah Jarang Potensial; Studi Kasus Pulau Selayar, Provinsi Kepulauan Riau,” Buletin Sumber Daya Geologi, vol. 13, no. 1, pp. 45-57, 2018.

[19] M. C. G. Clarke and B. Beddoe-Stephens, “Geochemistry, Mineralogy and Plate Tectonic Setting of a Late Cretaceous Sn-W Granite from Sumatra, Indonesia,” Mineralogical Magazine, vol. 51, no. 361, pp. 371-387, 1987.

[20] E. J. Cobbing, “Granites,” Geological Society, London, Memoirs, vol. 31, no. 1, pp. 54-62, 2005.

[21] R. Irzon, I. Syafri, N. Suwarna, J. Hutabarat, P. Sendjaja, and V. E. Setiawan, “Geochemistry of Granitoids in Central Sumatra: An Identification of Plate Extension during Triassic,” Geologica Acta, vol. 19, pp. 1-14, 2021.

[22] I. Metcalfe, “The Bentong–Raub Suture Zone,” Journal of Asian Earth Sciences, vol. 18, no. 6, pp. 691- 712, 2000.

[23] I. Metcalfe, “Late Palaeozoic and Mesozoic Tectonic and Palaeogeographical Evolution of SE Asia,” Geological Society, London, Special Publications, vol. 315, no. 1, pp. 7-23, 2009.

[24] A. J. Barber and M. J. Crow, “Structure of Sumatra and its Implications for the Tectonic Assembly of Southeast Asia and the Destruction of Paleotethys,” Island Arc, vol. 18, no. 1, pp. 3-20, 2009.

[25] F. I. Hazad, A. A. Ghani, and C. H. Lo, “Arc Related Dioritic–Granodioritic Magmatism from Southeastern Peninsular Malaysia and its Tectonic Implication,” Cretaceous Research, vol. 95, pp. 208-224, 2019.

[26] M. B. Baker, “The Application of Marble and Granite as Building Materials in Jordan,” Jordan Journal of Civil Engineering, vol. 11, no. 2, pp. 234-238, 2017.

[27] R. Irzon, I. Syafri, J. Hutabarat, P. Sendjaja, and S. Permanadewi, “Heavy Metals Content and Pollution in Tin Tailings from Singkep Island, Riau, Indonesia,” Sains Malaysiana, vol. 47, no. 11, pp. 2609-2616, 2018.

[28] E. Suwargi, B. Pardiarto, and T. Ishlah, “Potensi Logam Tanah Jarang di Indonesia,” Buletin Sumber Daya Geologi, vol. 5, no. 3, pp. 131-140, 2010.

[29] B. G. N. Page and R. D. Young, “Anomalous geochemical patterns from northern Sumatra: their assessment in terms of mineral exploration and regional geology,” Journal of Geochemical Exploration, vol. 15, no. 1-3, pp. 325-365, 1981.

[30] R. Al-Furqan, ”The Geology of Pinang-Pinang Au-Cu ą Mo Skarn, Aceh, Indonesia,” in Proceedings of Sundaland Resources, MGEI, Palembang, 2014.

[31] R. Irzon, I. Syafri, I. Setiawan, J. Hutabarat, P. Sendjaja, and A. D. Haryanto, “Imobilitas Unsur Tanah Jarang (UTJ) selama Mineralisasi Cu pada Granitoid Sulit Air, Provinsi Sumatra Barat,” RISET Geologi dan Pertambangan, vol. 29, no. 2, pp. 185-201, 2019.

[32] K. S. Ariffin and N. J. Hewson, “Gold‐related Sulfide Mineralization and Ore Genesis of the Penjom Gold Deposit, Pahang, Malaysia,” Resource Geology, vol. 57, no. 2, pp. 149-169, 2007.

[33] K. S. Ariffin, “Mesothermal Lode Gold Deposit Central Belt Peninsular Malaysia,” in Earth Sciences. IntechOpen, 2012.

[34] H. Singh, M. Sadiq, and B. B. Sharma, “Exploration for Rare Earth Elements in North East India,” Current Science, vol. 107, no. 2, pp. 178-180, 2014.

[35] R. Irzon, I. Syafri, A. A. Ghani, A. Prabowo, J. Hutabarat, and P. Sendjaja, “Petrography and geochemistry of the Pinkish Lagoi Granite, Bintan Island: Implication to Magmatic Differentiation, Classification, and Tectonic History,” Bulletin of the Geological Society of Malaysia, vol. 69, pp. 27-37, 2020.

[36] B. Lehmann and Harmanto, “Large-scale tin depletion in the Tanjungpandan tin granite, Belitung Island, Indonesia,” Economic Geology, vol. 85, no. 1, pp. 99-111, 1990.

[37] A. A. Ghani, F. I. Hazad, A. Jamil, Q. L. Xiang, W. N. A. W. Ismail, S. L. Chung, Y. M. Lai, M. H. Roselee, N. Islami, K. K. Nyein, M. H. A. Hassan, M. F. A. Bakar, and M. R. Umor, “Permian Ultrafelsic A-type Granite from Besar Islands Group, Johor, Peninsular Malaysia,” Journal of Earth System Science, vol. 123, no. 8, pp. 1857-1878, 2014.

[38] R. Irzon, “Geochemistry of Late Triassic weak Peraluminous A-Type Karimun Granite, Karimun Regency, Riau Islands Province,” Indonesian Journal on Geoscience, vol. 4, no. 1, pp. 21-37, 2017.

[39] F. Wu, X. Liu, W. Ji, J. Wang, and L. Yang, “Highly Fractionated Granites: Recognition and Research,” Science China Earth Sciences, vol. 60, no. 7, pp. 1201-1219, 2017.

[40] M. B. Wolf and D. London, “Incongruent Dissolution of REE-and Sr-rich Apatite in Peraluminous Granitic Liquids: Differential Apatite, Monazite, And Xenotime Solubilities During Anatexis,” American Mineralogist, vol. 80, no. 7-8, pp. 765-775, 1995.

[41] C. L. Owens, G. R. Nash, K. Hadler, R. S. Fitzpatrick, C. G. Anderson, and F. Wall, “Apatite enrichment by rare earth elements: a review of the effects of surface properties,” Advances in Colloid and Interface Science, vol. 265, pp. 14-28, 2019.

[42] R. Irzon and B. Abdullah, “Element Mobilization During Weathering Process of Ultramafic Complex in North Konawe Regency, Southeast Sulawesi Based on A Profile from Asera,” Indonesian Journal on Geoscience, vol. 5, no.3, pp. 277-290, 2018.

[43] Y. H. M. Li, W. W. Zhao, and M. F. Zhou, M.F., “Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model,” Journal of Asian Earth Sciences, vol. 148, pp. 65-95, 2017.

[44] A. A. Ghani, M. Shahjamal, N.T. Fatt, N. E. H. Ismail, M. Tarmizi, M. Zulkifley, N. Islami, Q. L. Xiang, A. F. A. Bakar, M. H. A. Hassan, M.H.A., J. H. A. Aziz, and A. F. Masor, “Ce Anomaly in I‒Type Granitic Soil from Kuantan, Peninsular Malaysia: Retention of Zircon in the Weathering Product,” Sains Malaysiana, vol. 48, no. 2, pp. 309-315, 2019.

[45] T. Soeprapto, “Mineralogical Study of Sibolga Granite as an Uranium Source,” Majalah BATAN, vol. 22, no. 2, 31-34, 1989.

[46] Ngadenin, “Geologi dan Potensi Terbentuknya Mineralisasi Uranium Tipe Batupasir di Daerah Hatapang, Sumatera Utara,” Eksplorium, vol. 34, no. 1, pp. 1-10, 2013.

[47] Ngadenin and A. J. Karunianto, “Identifikasi Keterdapatan Mineral Radioaktif pada Granit Muncung Sebagai Tahap Awal untuk Penilaian Prospek Uranium dan Thorium di Pulau Singkep,” Eksplorium, vol. 37, no. 2, pp. 63-72, 2016.

[48] U. Injarean, P. Pichestapong, P. Kewsuwan, and J. Laohaphornchaiphan, “Batch Simulation of Multistage Countercurrent Extraction of Uranium in Yellow Cake from Monazite Processing with 5% TBP/kerosene,” Energy Procedia, vol. 56, pp. 129-134, 2014.

[49] M. Anggraini, F. Wafa’Nawawi, and K. S. Widana, “Penentuan Kondisi Optimum Proses Ekstraksi Uranium dan Torium dari Terak II Timah dengan Metode Pelindian Asam Sulfat dan Solvent Extraction Trioctylamine (TOA),” Eksplorium, vol. 40, no. 1, pp. 11-18, 2019.

[50] F. Boekhout, M. Gérard, A. Kanzari, A. Michel, A. Déjeant, L. Galoisy, and M. Descostes, “Uranium migration and retention during weathering of a granitic waste rock pile,” Applied Geochemistry, vol. 58, pp. 123-135, 2015.


  • There are currently no refbacks.

Google Scholar Logo SINTA Logo Logo GARUDA

Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.