Penentuan Komposisi Bahan Bakar Nabati Dalam Bahan Bakar Minyak Campuran Menggunakan Metode Direct Counting C-14

Neneng Laksminingpuri Sanusi, Moch Faizal Ramadhani, Nurfadhlini Nurfadhlini, Lies Aisyah

DOI: http://dx.doi.org/10.55981/eksplorium.2021.6363

Abstract


ABSTRAK. Telah dilakukan penentuan komposisi bahan bakar nabati (BBN) dalam bahan bakar minyak campuran (BBMC) dengan metode direct counting C-14. Penentuan komposisi BBN dalam BBMC dilakukan dengan cara memipet 10 mL BBMC ke dalam vial gelas kemudian ditambahkan 10 mL larutan sintilator Ultima Gold F (UGF) ke dalamnya. Vial tersebut dikocok agar campuran menjadi homogen kemudian dicacah menggunakan LSC (Liquid Scintillation Counter) Elmer Perkin 2900TR selama 20 menit sebanyak 30 siklus. Hasil pencacahan ditampilkan dalam bentuk tSIE (transformed external standard spectrum) dan cpm (cacahan permenit). Hasil analisis memperlihatkan nilai cpm yang meningkat seiring kenaikan persentase BBN dalam BBMC. Nilai cpm terendah dan tertinggi untuk sampel bensin, avtur, dan solar berturut-turut adalah 14,2363 dan 62,0343, 10,664 dan 44,535, serta 9,410 dan 61,789. Terdapat korelasi kuat antara nilai tSIE dan nilai cpm pada bensin dan solar tapi tidak pada avtur. Hasil analisis terhadap sampel uji menunjukkan bahwa sampel tersebut berada di luar grafik deret sampel. Metode direct counting ini diharapkan dapat menjadi referensi dalam uji mutu BBMC.

ABSTRACTThe composition of biofuel (BF) in mixed oil fuel (MOF) has been determined using the C-14 direct counting method. Determination of the composition of BF in MOF was carried out by pipetting 10 mL of BBMC into a glass vial and then adding 10 mL of Ultima Gold F (UGF) scintillator solution into it. The vial was shaken so that the mixture became homogeneous and then counted using the Elmer Perkin 2900TR LSC (Liquid Scintillation Counter) for 20 minutes for 30 cycles. The results of the counting are displayed in the form of tSIE (transformed external standard spectrum) and cpm (counts per minute). The results of the analysis show that the value of cpm increases with the increase in the percentage of BF in MOF. The lowest and highest cpm values for gasoline, avtur, and diesel samples were 14.2363 and 62.0343, 10.664 and 44.535, and 9.410 and 61.789, respectively. There is a strong correlation between tSIE and cpm values for gasoline and diesel but not for avtur. The results of the analysis of the test sample indicate that the sample is outside the sample series graph. This direct counting method is expected to be a reference in the BBMC quality test.


References


[1] Kementerian Energi dan Sumber Daya Mineral, Rencana Strategis Kementerian Energi dan Sumber Daya Mineral 2015-2019. 2015.

[2] BPS, BP Statistical Review 2015: Pasar Energi Indonesia 2014. Badan Pusat Statistik, 2015.

[3] Kementerian PPN/Bappenas, Kajian Pengembangan Bahan Bakar Nabati (BBN). Direktorat Sumber Daya Energi, Mineral, dan Pertambangan, Kementrian PPN/Bappenas, 2015.

[4] Rahmawati, “Pengujian Mutu Biofuel Berbasis 14C dan Kandungan Unsur-Unsur Runut (Trace Elements),” Universitas Hasanuddin, 2018.

[5] M. D. Sholikhah, “Pengembangan Metoda Kontrol Kualitas untuk Uji Mutu Biodiesel yang dapat Diterapkan Oleh Industri Kecil-Menengah,” Jakarta, 2010.

[6] R. Kristof, M. Hirsch, and J. K. Logard, “Implementation of Direct LSC Method for Diesel Samples on The Fuel Market,” Appl. Radiat. Isot., vol. 93, no. April, pp. 101–105, 2014, doi: 10.1016/j.apradiso.2014.04.003.

[7] I. J. Dijs, E. van der Windt, L. Kaihola, and K. van der Borg, “Quantitative Determination by 14C Analysis of The Biological Component in Fuels,” Radiocarbon, vol. 48, no. 3, pp. 315–323, 2006, doi: 10.1017/S0033822200038777.

[8] J. Noakes, G. Norton, R. Culp, M. Nigam, and D. Dvoracek, “A Comparison of Analytical Methods for The Certification of Biobased Products,” in LSC 2005, Advances in Liquid Scintillation Spectrometry, 2006, pp. 259–271.

[9] S. Yunoki and M. Saito, “A Simple Method to Determine Bioethanol Contentin Gasoline Using Two-Step Extraction and Liquid Scintillation Counting,” Bioresour. Technol., vol. 100, no. 23, pp. 6125–8, 2009, doi: 10.1016/j.biortech.2009.06.027.

[10] Y. Takahashi, H. Sakurai, E. Inui, S. Namai, and S. Sato, “Radiocarbon Measurement of Biodiesel Fuel Using The Liquid Scintillation Counter Quantulus. In: Cassette, P.(Ed.), LSC 2010, Advances in Liquid Scintillation Spectrometry.,” in LSC 2010, Advances in Liquid Scintillation Spectrometry, 2011, pp. 41–44.

[11] R. Krištof and J. K. Logar, “Direct LSC Method for Measurements of Biofuels in Fuel,” Talanta, vol. 111, pp. 183–188, 2013, doi: 10.1016/j.talanta.2013.03.009.

[12] R. Idoeta, E. Pérez, M. Herranz, and F. Legarda, “Characteristic Parameters in the Measurement of 14C of Biobased Diesel Fuels by Liquid Scintillation,” Appl. Radiat. Isot., vol. 93, pp. 110–113, 2014, doi: 10.1016/j.apradiso.2014.01.019.

[13] R. Edler and L. Kaihola, “Determination of the 14C Content in Fuels Containing Bioethanol and Other Biogenic Materials with Liquid Scintillation Counting,” 2007.

[14] W. G. Mook and J. van der Plicht, “Reporting 14C Activities and Concentrations,” Radiocarbon, vol. 41, no. 3, pp. 227–239, 1999, doi: 10.1017/s0033822200057106.

[15] M. Stomp-Smit, J. ter Wiel, and R. Edler, “Determination of the 14C Content in Biodiesel. A Method Improving the Detection Sensitivity by Decolorizing the Biogenic Material in Biofuel,” 2010.

[16] I. K. Bronić, J. Barešić, N. Horvatinčić, and A. Sironić, “Determination of Biogenic Component in Liquid Fuels by the 14 C Direct LSC Method by Using Quenching Properties of Modern Liquids for Calibration,” Radiat. Phys. Chem., vol. 137, pp. 248–253, 2017, doi: 10.1016/j.radphyschem.2016.01.041.

[17] R. Edler and L. Kaihola, “Differentiation between Fossil and Biofuels by Liquid Scintillation Beta Spectrometry–Direct Method,” Nukleonika, vol. 55, no. 1, pp. 127–131, 2010.

[18] Y. Nedjadi, P.-F. Duc, F. Bochud, and C. J. Bailat, “On the Stability of 3H and 63Ni Ultima Gold Liquid Scintillation Sources,” Appl. Radiat. Isot., vol. 118, pp. 25–31, 2016, doi: 10.1016/j.apradiso.2016.08.017.

[19] R. Krištof and J. K. Logar, “Liquid Scintillation Spectrometry as a Tool of Biofuel Quantification,” in Frontiers in Bioenergy and Biofuels, E. Jacob-Lopes, Ed. IntechOpen, 2017, pp. 59–69.

[20] M. F. L’Annunziata, A. Tarancón, H. Bagán, and J. F. García, “Liquid Scintillation Analysis: Principles and Practice,” in Handbook of Radioactivity Analysis, 4th ed., vol. 1, M. F. L’Annunziata, Ed. Academic Press, 2020, pp. 575–801.

[21] C. G. Doll, C. W. Wright, S. M. Morley, and B. W. Wright, “Analysis of Fuel Using the Direct LSC Method Determination of Bio-Originated Fuel in the Presence of Quenching,” Appl. Radiat. Isot., vol. 122, no. November 2016, pp. 215–221, 2017, doi: 10.1016/j.apradiso.2017.01.040.

[22] M. Hurt, J. Martinez, A. Pradhan, M. Young, and M. E. Moir, “Liquid Scintillation Counting Method for the Refinery Laboratory-Based Measurements of Fuels to Support Refinery Bio-Feed Co-Processing,” Energy and Fuels, vol. 35, no. 2, pp. 1503–1510, 2021, doi: 10.1021/acs.energyfuels.0c03445.

[23] C. G. Doll et al., “Determination of Low-Level Biogenic Gasoline, Jet Fuel, and Diesel in Blends Using the Direct Liquid Scintillation Counting Method for 14C Content,” Fuel, vol. 291, 2021, doi: 10.1016/j.fuel.2020.120084.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.