Ore Mineralization Characteristics in Hydrothermal Alteration at Mangunharjo and Surrounding Area, Pacitan, Indonesia

Abdul Faisal Baba, Sri Mulyaningsih, Radhitya Adzan Hidayah

DOI: http://dx.doi.org/10.55981/eksplorium.2022.6194

Abstract


The research area is located in Mangunharjo-Grindulu, Pacitan (Indonesia), as part of the Southern Mountain Tertiary Volcanic Arch. Outcrops of quartz veins-riched volcanic rock associated with sulfide minerals are found in this area. The Southern Mountain Oligo-Miocene magmatic arc is known as the potential area that contains precious metal deposits. The study aimed to determine the characteristics of the mineralized zone in this area. The research methods are geological surface mapping, thin-section observation, mineragraphy, and X-Ray Diffraction (XRD). The results show that the constituent lithologies were andesitic lava, breccia, and tuff; co-ignimbrite breccia, dacitic pumice and tuff, and dacitic dike; and pyroxene-rich andesitic volcanic rocks. The geological structure is dominated by oblique normal faults, strike-slip faults, and upward oblique faults associated with shear joints filled with quartz veins. Fieldwork observation, thin-section analyses, and mineragraphic and XRD observations identify three alteration zones in the hydrothermal system: the advanced argillic zone, the intermediate argillic zone, and the chloritized zone. By the mineral’s association, it is interpreted that the advanced argillic zone was formed at a temperature of 220-330oC and pH 3-6 due to dissemination with side rocks located near the hydrothermal flows; the intermediate argillic zone and the chloritized zone were formed at a temperature of 150-300oC and a pH of 5-6 due to chloritized alteration of the hydrothermal fluid carrying the ore. This alteration zone has no economic potential for precious metal minerals so it is better to be developed for education, conservation, and natural laboratories.


Keywords


Geology; Ore Mineralization; Hydrothermal Alteration

Full Text:

PDF

References


[1] W. B. Hamilton, Tectonics of the Indonesian Region, vol. 1078, US Government Printing Office, 1979.

[2] H. Samudera, S. Gafoer, and Tjokrosapoetro, “Peta Geologi Lembar Pacitan-Jawa,” Pusat Penelitian dan Pengembangan Geologi, Bandung, 1992.

[3] Sampurno and H. Samudera, “Peta Geologi Lembar Ponorogo, Jawa,” Pusat Penelitian dan Pengembangan Geologi, Bandung, 1997.

[4] I. Setiawan and S. Sudarsono, “Mineralisasi Polimetalik Di Daerah Kedung Grombyang, Pacitan, Jawa Timur: Dalam Perbandingan Dengan Cebakan Emas Gunung Pongkor, Bogor, Jawa Barat,” Riset Geologi dan Pertambangan, vol. 20, no. 1, pp. 29–42, 2009.

[5] A. U. Fathoni, “Geologi Alterasi dan Mineralisasi Daerah Nawangan dan Sekitarnya Kecamatan Arjosari Kabupaten Pacitan Provinsi Jawa Timur,” Universitas Jenderal Soedirman, 2020.

[6] Z. Rahman, “Studi Mineralisasi Dengan Pendekatan Mineragrafi dan Metode Gayaberat Daerah Kecamatan Arjosari dan Tegalombo, Kabupaten Pacitan, Provinsi Jawa Timur,” Universitas Pembangunan Nasional ‘Veteran’ Yogyakarta, 2019.

[7] M. H. Pratama, “Geologi, Alterasi dan Mineralisasi pada Endapan Hidrothermal Daerah Mlati dan Sekitarnya, Kecamatan Arjosari, Kabupaten Pacitan, Provinsi Jawa Timur,” Universitas Pembangunan Nasional ‘Veteran’ Yogyakarta, 2019.

[8] I. Setiawan, “Pengkayaan Cu Dan Mo Pada Mineralisasi Epitermal Emas dan Logam Dasar Daerah Kali Grindulu, Pacitan, Jawa Timur,” in Prosiding Geoteknologi LIPI, 2007.

[9] F. Pirajno, Hydrothermal Mineral Deposits, Principles and Fundamental Concepts for the Exploration Geologist, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, 1992.

[10] J. D. Lowell and J. M. Guilbert, “Lateral and Vertical Alteration-mineralization Zoning in Porphyry Ore Deposits,” Economic Geology, vol. 65, no. 4, pp. 373-408, 1970.

[11] M. H. Reed, “Hydrothermal Alteration and its Relationship to Ore Fluid Compotition,” Geochemistry of Hydrothermal Ore Deposits, vol. 3, pp. 303-365, 1997.

[12] R. Soeria-Atmadja, R. C. Maury, H. Bellon, H. Pringgoprawiro, M. Polve, and B. Priadi, “Tertiary Magmatic Belts in Java,” Journal of Southeast Asian Earth Sciences, vol. 9, no. 1-2, pp. 13-27, 1994.

[13] G. J. Corbett and T. M. Leach, “Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration and Mineralization,” in Manual for an Exploration Short Course, Baguio, Philippines, 1996.

[14] S. Mulyaningsih, Vulkanologi, Ombak, Yogyakarta, p. 284, 2015.

[15] C. S. Evans, “The Geology, Geochemistry, and Alteration of Red Butte, Oregon: A Precious Metal-Bearing Paleo Hot Spring System,” Portland State University, 1986.

[16] L. D. Setijadji, S. Kajino, A. Imai, and K. Watanabe, “Cenozoic Island Arc Magmatism in Java Island (Sunda Arc, Indonesia): Clues on Relationships Between Geodynamics Of Volcanic Centers and Ore Mineralization,” Resour. Geol., vol. 56, no.3, pp.267–92, 2006.

[17] Y. R. S. Sukisman, S. Mulyaningsih, and R. A. Hidayah, “Zonation Analyses of Hydrothermal Alteration and Ore Metal Mineralisation at Temon, Pacitan, East Jawa, Indonesia,” J. Geosci. Eng. Environ. Technol., vol. 6, no. 10, pp. 24–33, 2021.


Refbacks





Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.