Sub-surface Geological Modeling Based on Gravity Residual Data in Adang Volcanic Rock Area, Mamuju, West Sulawesi Province

Adhika Junara Karunianto, Dwi Haryanto, Ngadenin Ngadenin

DOI: http://dx.doi.org/10.55981/eksplorium.2022.6089

Abstract


The Mamuju area of West Sulawesi Province is composed of Adang volcanic rock that is a product of the process of volcanism in a volcanic complex with an eruption center and several lava domes. The geology of the study area is composed of eleven rock units, namely Adang breccia, Adang lava, lava dome, volcanic conglomerate, Ampalas breccia, Malunda breccia, Boteng lava, Tapalang breccia, limestone, reef limestone, and alluvium. The mineralization of uranium, thorium, and rare earth elements formed in Adang lava thorianite veins. Adang lava is intruded by a dioritoid found in the Mamuju river upstream. The gravity modeling technique has produced two 2-D subsurface models based on gravity data on 2-D cross-sections of the residual gravity map. It is known that the rock density range from 2.10 to 2.85 g/cm3 in the study area. Based on the interpretation of two 2-D subsurface models, a batholith, a giant-sized intrusive rock, is found in the southeastern part of the study area with a rock density of about 2.85 g/cm3 and is interpreted to be dioritoids. Furthermore, deep intrusion rocks also occur in the center part of the study area with a rock density of 2.8 g/cm3. It is estimated to be the same as the rock in the southeastern part of the study area. Dioritoid intrudes a volcanic breccia sedimentary rock with a density of about 2.1 g/cm3.


Keywords


Mamuju; gravity; modeling; density; batholith

Full Text:

PDF

References


[1] Iskandar, D. Syarbaini, and Kusdiana, Map of Environmental Gamma Dose Rate of Indonesian. Jakarta: Tidak dipublikasikan, 2007.

[2] H. Syaeful, I. G. Sukadana, and A. Sumaryanto, “Radiometric Mapping for Naturally Occurring Radioactive Materials ( NORM ) Assessment in Mamuju, West Sulawesi,” Atom Indones., vol. 40, no. 1, pp. 33–39, 2014.

[3] I. G. Sukadana, A. Harijoko, and L. D. Setijadji, “Tataan Tektonika Batuan Gunung Api di Kompleks Adang Kabupaten Mamuju, Provinsi Sulawesi Barat,” Eksplorium, vol. 36, no. 1, pp. 31–44, 2015.

[4] F. D. Indrastomo, I. G. Sukadana, A. Saepuloh, A. H. Harsolumakso, and D. Kamajati, “Interpretasi Vulkanostratigrafi Daerah Mamuju Berdasarkan Analisis Citra Landsat-8,” Eksplorium, vol. 36, no. 2, p. 71, 2015.

[5] A. J. Karunianto, D. Haryanto, F. Hikmatullah, and A. Laensapura, “Penentuan Anomali Gaya berat Regional dan Residual Menggunakan Filter Gaussian Daerah Mamuju, Sulawesi Barat,” Eksplorium, vol. 38, no. 2, pp. 89–98, 2017.

[6] F. D. Indrastomo, I. G. Sukadana, and Suharji, “Identifikasi Pola Struktur Geologi Sebagai Pengontrol Sebaran Mineral Radioaktif Berdasarkan Kelurusan pada Citra Landsat-8 di Mamuju , Sulawesi Barat,” Eksplorium, vol. 38, no. 2, pp. 71–80, 2017.

[7] A. G. Muhammad, F. D. Indrastomo, and I. G. Sukadana, “Pola Tahanan Jenis dan Konduktivitas Batuan Mengandung Mineral Radioaktif di Botteng dan Takandeang, Mamuju, Sulawesi Barat,” Eksplorium, vol. 38, no. 1, pp. 49–62, 2017.

[8] R. Hall, M. A. Cottam, and M. E. J. Wilson, “The SE Asian Gateway: History and Tectonics of the Australia–Asia collision,” Geol. Soc. London Spec. Publ., vol. 355, pp. 1–6, 2011.

[9] M. I. N. Said, M. Anggraini, M. Z. Mubarok, and K. S. Widana, “Studi Ekstraksi Bijih Thorit dengan Metode Digesti Asam dan Pemisahan Thorium dari Logam Tanah Jarang dengan Metode Oksidasi-Presipitasi Selektif, ” Eksplorium, vol. 38, no. 2, pp. 109–120, 2017.

[10] I. G. Sukadana, H. Syaeful, F. D. Indrastomo, K. S. Widana, and E. Rakhma, “Identification of Mineralization Type and Specific Radioactive Minerals in Mamuju, West Sulawesi,” J. East China Univ. Technol., vol. 39, no. 1, pp. 36–45, 2016.

[11] Jamidun, M. Rusydi, K. S. Brotopuspito, S. Pramumijoyo, and W. Suryanto, “Analisis dan Model Inversi Gaya Berat 2D untuk Penampakan Sesar Palu Koro Di Sulawesi Tengah Indonesia,” Nat. Sci. J. Sci. Technol., vol. 8, no. 1, pp. 77–86, 2019.

[12] A. D. Maulana and D. A. Prasetyo, “Analisa Matematis pada Koreksi Bouguer dan Koreksi Medan Data Gravitasi Satelit Topex dalam Penentuan Kondisi Geologi Studi Kasus Sesar Palu Koro, Sulawesi Tengah,” Geosaintek, vol. 5, no. 3, pp. 91–100, 2019.

[13] A. Mangala, Yobel, and M. K. Alfadli, “Pemodelan Struktur Geologi dan Analisis Sumber Panas Menggunakan Metode Gravitasi, Magnetik dan Fault Fracture Density (Ffd) pada Daerah Panas Bumi Bittuang, Sulawesi Selatan,” in Seminar Nasional Kebumian ke-10: Peran Penelitian Ilmu Kebumian dalam Pembangunan Infrastruktur di Indonesia, 2017, pp. 1566–1578.

[14] R. Efendi, Abdullah, E. Syamsuddin, M. Rusydi, Nirmayanti, A. Sugianto, and W. Joni, “Integrated of Gravity and Magnetic Data to Modeling Structure Subsurface in Bora Geothermal Field Central Sulawesi,” in IOP Conf. Series: Earth and Environmental Science, 2019.

[15] A. Hartati, “Identifikasi Struktur Patahan Berdasarkan Analisa Derivative Metode Gaya Berat di Pulau Sulawesi,” Universitas Indonesia, 2012.

[16] M. Štemprok and V. Blecha, “Variscan Sn–W–Mo Metallogeny in the Gravity Picture of the Krušné Hory/Erzgebirge Granite Batholith (Central Europe),” Ore Geol. Rev., vol. 69, pp. 285–300, 2015.

[17] Y. Q. Chen, L. N. Zhang, and B. B. Zhao, “Application of Bi-Dimensional Empirical Mode Decomposition (BEMD) Modeling for Extracting Gravity Anomaly Indicating the Ore-Controlling Geological Architectures and Granites in the Gejiu Tin-Copper Polymetallic Ore Field, Southwestern China,” Ore Geol. Rev., vol. 88, pp. 832–840, 2017.

[18] F. A. Fauzi, M. H. Arifin, M. B. I. Basori, K. A. M. Noh, and M. R. Umor, “Application of Gravity Survey for Tin Exploration at Bongsu Granite, Kulim, Kedah, Malaysia,” Sains Malaysiana, vol. 48, no. 11, pp. 2503–2509, 2019.

[19] C. D. Ramotoroko, R. T. Ranganai, and P. Nyabeze, “Extension of the Archaean Madibe-Kraaipan Granite-Greenstone Terrane in Southeast Botswana: Constraints from Gravity and Magnetic Data,” J. African Earth Sci., vol. 123, pp. 39–56, 2016.

[20] D. El Azzab, Y. Ghfir, and A. Miftah, “Geological Interpretation of the Rifian Foreland Gravity Anomalies and 3D Modeling of Their Hercynian Granites (Northeastern Morocco),” J. African Earth Sci., vol. 150, pp. 584–594, 2019.

[21] C. Yan, L. Shu, Y. Chen, M. Faure, Z. Feng, and M. Zhai, “The Construction Mechanism of the Neoproterozoic S-Type Sanfang-Yuanbaoshan Granitic Plutons in the Jiangnan Orogenic Belt, South China: Insights from Geological Observation, Geochronology, AMS and Bouguer Gravity Modeling,” Precambrian Res., vol. 354, 2021.

[22] J. Milsom, Field Geophysics - The Geological Field Guide Series, 3rd Editio. London: John Wiley & Sons Ltd, 2003.

[23] I G. Sukadana, H. Syaeful, “Implication of Hydrothermal Process on Radioactive and Rare Earth Element Enrichment in Mamuju, West Sulawesi,” in Proceedings of Joint Convention Malang: Natural Resources and Infrastructure Development for National Sovereignty, 2017.

[24] A. F. Sompotan, Struktur Geologi Sulawesi. Bandung: Perpustakaan Sains Kebumian Institut Teknologi Bandung, 2012.

[25] T. M. Van Leeuwen and P. E. Pieters, “Mineral Deposits of Sulawesi,” in Proceedings of the Sulawesi Mineral Resources 2011 Seminar MGEIIAGI, 2011.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.


    

 

 

?>
slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor