Seismisitas di Wilayah Jawa Tengah dan Sekitarnya Berdasarkan Hasil Relokasi Hiposenter dari Empat Jaringan Seismik Menggunakan Model Kecepatan 3-D

Mohamad Ramdhan, Priyobudi Priyobudi, Said Kristyawan, Andry Syaly Sembiring

DOI: http://dx.doi.org/10.55981/eksplorium.2020.5828

Abstract


ABSTRAK Relokasi hiposenter merupakan suatu metode yang digunakan untuk mendapatkan parameter-parameter gempa yang presisi. Parameter-parameter tersebut digunakan untuk studi tektonik lanjut seperti seismic hazard assessment pada suatu area. Penggunan model kecepatan 3-D secara teori akan memberikan hasil yang lebih baik dibandingkan dengan model 1-D karena model kecepatan di bawah permukaan bumi lebih mendekati model 3-D. Sebanyak 767 event gempa yang direkam oleh jaringan seismik DOMERAPI, MERAMEX, BMKG, dan BPPTKG digunakan pada penelitian ini. Gempa-gempa tersebut direlokasi dengan model kecepatan 3-D dan dianalisis untuk studi seismotektonik di wilayah Jawa Tengah dan sekitarnya. Hasil relokasi hiposenter menggunakan model kecepatan 3-D berhasil mendeteksi sejumlah fitur tektonik secara lebih jelas seperti struktur kolom yang berkaitan dengan Struktur backthrust di selatan Kebumen. Penampang vertikal arah barat-timur yang melewati Sesar Opak mengindikasikan arah dip bidang sesarnya ke arah timur. Zona seismik ganda yang terdeteksi pada studi sebelumnya tidak bisa teridentifikasi dengan baik pada studi ini. Sejumlah gempa volcano-tectonic (VT) berkaitan dengan aktivitas magma dangkal Gunung Merapi terdeteksi juga dengan jelas pada studi ini.

ABSTRACT Hypocenter relocation is a method used to get precise earthquake parameters. They will be useful for an advanced tectonic study like seismic hazard assessment in an area. The hypocenter relocation using a 3-D velocity model will theoretically obtain better results than a 1-D velocity model because the earth subsurface model is closed with a 3-D model. Some 767 earthquakes recorded by DOMERAPI, MERAMEX, BMKG, and BPPTKG networks used in this research. They were relocated by using a 3-D velocity model and analyzed for seismotectonic study in Central Java area and its surroundings. The result of hypocenter relocation using a 3-D velocity model is successfully detecting some tectonic features more clearly like columnar structure related to the backthrust structure at the south of Kebumen. The west-east vertical cross-section crossing the Opak fault indicates the dip of the fault plane is directing to the east. This study could not identify the double seismic zone, which was detected by the previous research. Some volcano-tectonic (VT) earthquakes related to the shallow magma activity of Mount Merapi also are detected clearly in this study.


Keywords


Gempa, relokasi, kecepatan 3-D, Jawa Tengah

References


[1] A. P. Cahyaningrum, A. D. Nugraha, dan N. T. Puspito, “Earthquake Hypocenter Relocation Using Double Difference Method in East Java and Surrounding Areas,” in AIP Conference Proceedings, vol. 1658, p. 030021, 2015.

[2] A. D. Nugraha, H. A. Shiddiqi, S. Widiyantoro, C. H. Thurber, J. D. Pesicek, H. Zhang, S. H. Wiyono, M. Ramdhan, dan M. Irsyam, “Hypocenter Relocation along the Sunda Arc in Indonesia, Using a 3D Seismic-Velocity Model,” Seismological Research Letters, vol. 89, no. 2A, pp. 603–612, 2018.

[3] M. Ramdhan dan A. D. Nugraha, “Study of Seismicity Around Toba Area Based on Relocation Hypocenter Result from BMKG Catalogue” in Padjadjaran International Physics Symposium 2013 (PIPS-2013): Contribution of Physics on Environmental and Energy Conservations, vol. 1554, pp. 242–244, 2013.

[4] A. Sabtaji dan A. D. Nugraha, “1-D Seismic Velocity Model and Hypocenter Relocation Using Double Difference Method Around West Papua Region,” in AIP Conference Proceedings, vol. 1658, 2015.

[5] I. Koulakov, M. Bohm, G. Asch, B. ‐G. Lühr, A. Manzanares, K. S. Brotopuspito, P. Fauzi, M. A. Purbawinata, N. T. Puspito, A. Ratdomopurbo, H. Kopp, W. Rabbel, E. Shevkunova, “P and S Velocity Structure of the Crust and The Upper Mantle Beneath Central Java from Local Tomography Inversion,” Journal of Geophysical Research: Solid Earth, vol. 112, no. B8, 2007.

[6] D. Wagner, I. Koulakov, W. Rabbel, B. -G. Luehr, A. Wittwer, H. Kopp, M. Bohm, G. Asch, dan MERAMEX Scientists, “Joint Inversion of Active and Passive Seismic Data in Central Java,” Geophysical Journal International, vol. 170, no. 2, pp. 923–932, 2007.

[7] S. Rohadi, S. Widiyantoro, A. Nugraha, dan Masturyono, “Tomographic imaging of P and S Wave Velocity Structure Beneath Central Java, Indonesia: Joint Inversion of The MERAMEX and MCGA Earthquake Data,” International Journal of Tomography & SimulationTM, vol. 24, no. 3, pp. 1–16, 2013.

[8] A. Ratdomopurbo dan G. Poupinet, “An Overview of The Seismicity of Merapi Volcano (Java, Indonesia), 1983–1994,” Journal of Volcanology and Geothermal Research, vol. 100, no. 1–4, pp. 193–214, Jul. 2000, doi: 10.1016/S0377-0273(00)00137-2.

[9] Surono dkk., “The 2010 Explosive Eruption of Java’s Merapi Volcano—A ‘100-year’ Event,” Journal of Volcanology and Geothermal Research, vol. 241–242, pp. 121–135, Oct. 2012, doi: 10.1016/j.jvolgeores.2012.06.018.

[10] C. Haberland, M. Bohm, dan G. Asch, “Accretionary Nature of The Crust of Central and East Java (Indonesia) Revealed by Local Earthquake Travel-time Tomography,” Journal of Asian Earth Sciences, vol. 96, pp. 287–295, Dec. 2014, doi: 10.1016/j.jseaes.2014.09.019.

[11] S. Widiyantoro, M. Ramdhan, J. -P. Métaxian, P. R. Cummins, C. Martel, S. Erdmann, A. D. Nugraha, A. Budi-Santoso, A. Laurin dan A. A. Fahmi, “Seismic Imaging and Petrology Explain Highly Explosive Eruptions of Merapi Volcano, Indonesia,” Scientific Reports, vol. 8, no. 1, p. 13656, Sep. 2018, doi: 10.1038/s41598-018-31293-w.

[12] M. Ramdhan, S. Widiyantoro, A. D. Nugraha, J. -P. Métaxian, N. Rawlinson, A. Saepuloh, S. Kristyawan, A. S. Sembiring, A. B. Santoso, A. Laurin, dan A. A. Fahmi., “Detailed Seismic Imaging of Merapi Volcano, Indonesia, from Local Earthquake Travel-time Tomography,” Journal of Asian Earth Sciences, vol. 177, pp. 134–145, Jun. 2019, doi: 10.1016/j.jseaes.2019.03.018.

[13] M. Ramdhan, S. Kristyawan, A. S. Sembiring, D. Daryono, dan P. Priyobudi, “Struktur Kecepatan Seismik di Bawah Gunung Merapi dan Sekitarnya Berdasarkan Studi Tomografi Seismik Waktu Tempuh,” RISET Geologi dan Pertambangan, vol. 29, no. 2, Dec. 2019, doi: 10.14203/risetgeotam2019.v29.1047.

[14] M. Ramdhan, S. Widiyantoro, A. D. Nugraha, J. -P Métaxian, A. Saepuloh, S. Kristyawan, A. S. Sembiring, A. B. Santoso, A. Laurin, dan A. A. Fahmi, “Relocation of Hypocenters from DOMERAPI and BMKG Networks: A Preliminary Result from DOMERAPI Project,” Earthquake Science, vol. 30, no. 2, pp. 67–79, 2017.

[15] M. Ramdhan, A. D. Nugraha, S. Widiyantoro, J.-P. Métaxian, dan A. A. Valencia, “Earthquake Location Determination Using Data from DOMERAPI and BMKG Seismic Networks: A Preliminary Result of DOMERAPI Project,” in 4th International Symposium on Earthquake and Disaster Mitigation 2014 (ISEDM 2014), 2015, vol. 1658, p. 030007.

[16] F. Waldhauser dan W. L. Ellsworth, “A double-difference Earthquake Location Algorithm: Method and Application to The Northern Hayward Fault, California,” Bulletin of the Seismological Society of America, vol. 90, no. 6, pp. 1353–1368, 2000.

[17] F. Waldhauser, “HypoDD: A Computer Program to Compute Double-difference Earthquake Location,” US Geol. Surv. Openfile report, pp. 01–113, 2001.

[18] J. R. Evans, D. Eberhart-Phillips, dan C. Thurber, “User’s Manual for SIMULPS12 for Imaging Vp and Vp/Vs; a Derivative of The" Thurber" tomographic inversion SIMUL3 for local earthquakes and explosions,” US Geological Survey, 1994.

[19] C. Thurber, Local Earthquake Tomography: Velocities and Vp/Vs—theory in Seismic Tomography: Theory and Practice pp. 563–583 eds Iyer HM, Hirahara K. Chapman & Hall London, 1993.

[20] C. Thurber dan D. Eberhart-Phillips, “Local Earthquake Tomography with Flexible Gridding,” Computers & Geosciences, vol. 25, no. 7, pp. 809–818, 1999.

[21] C. C. Paige dan M. A. Saunders, “LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares,” ACM Transactions on Mathematical Software, vol. 8, no. 1, pp. 43–71, 1982.

[22] J. Pesicek, C. Thurber, H. Zhang, H. DeShon, E. Engdahl, dan S. Widiyantoro, “Teleseismic Double-difference Relocation of Earthquakes Along the Sumatra-Andaman Subduction Zone Using a 3-D Model,” Journal of Geophysical Research: Solid Earth, vol. 115, no. B10, 2010.

[23] G. P. Hayes, D. J. Wald, dan R. L. Johnson, “Slab1. 0: A three-dimensional Model of Global Subduction Zone Geometries,” Journal of Geophysical Research: Solid Earth, vol. 117, no. B1, 2012.

[24] Global CMT, “Global Centroid Moment Tensor Project.” http://www.globalcmt.org/ (accessed Nov. 07, 2016).

[25] M. Nakano, H Kumagai, K. Miyakawa, T. Yamashina, H Inoue, M. Ishida, S. Aoi, N. Morikawa, dan P Harjadi, “Source Estimates of The May 2006 Java Earthquake,” Eos, Transactions American Geophysical Union, vol. 87, no. 45, pp. 493–494, Nov. 2006, doi: 10.1029/2006EO45 0002.

[26] T. Tsuji, K. Yamamoto, T. Matsuoka, Y. Yamada, K. Onishi, A. Bahar, I. Meilano, dan H. Z. Abidin , “Earthquake Fault of the 26 May 2006 Yogyakarta Earthquake Observed by SAR Interferometry,” Earth, Planets and Space, vol. 61, no. 7, p. e29, Aug. 2009, doi: 10.1186/BF033 53189.

[27] H. R. Smyth, R. Hall, dan G. J. Nichols, “Cenozoic Volcanic Arc History of East Java, Indonesia: The stratigraphic Record of Eruptions on an Active Continental Margin,” in Special Paper 436: Formation and Applications of the Sedimentary Record in Arc Collision Zones, vol. 436, Geological Society of America, 2008, pp. 199–222.

[28] I. Wölbern dan G. Rümpker, “Crustal Thickness Beneath Central and East Java (Indonesia) Inferred from P Receiver Functions,” Journal of Asian Earth Sciences, vol. 115, pp. 69–79, Jan. 2016, doi: 10.1016/j.jseaes.2015.09.001.

[29] J. D. Pesicek, C. H. Thurber, S. Widiyantoro, E. R. Engdahl, dan H. R. DeShon, “Complex Slab Subduction Beneath Northern Sumatra,” Geophys. Res. Lett., vol. 35, no. 20, p. L20303, Oct. 2008, doi: 10.1029/2008GL035262.

[30] S. Xu, E. Fukuyama, Y. Ben-Zion, dan J.-P. Ampuero, “Dynamic Rupture Activation of Backthrust Fault Branching,” Tectonophysics, vol. 644–645, pp. 161–183, Mar. 2015, doi: 10.1016/j.tecto.2015.01.011.

[31] S. Lallemand, A. Heuret, dan D. Boutelier, “On the Relationships Between Slab Dip, Back-arc Stress, Upper Plate Absolute Motion, and Crustal Nature in Subduction Zones,” Geochemistry, Geophysics, Geosystems, vol. 6, no. 9, 2005, doi: 10.1029/2005GC000917.

[32] P. Wessel dan W. H. Smith, “New, Improved Version of Generic Mapping Tools Released,” Eos, Transactions American Geophysical Union, vol. 79, no. 47, pp. 579, 1998.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.