Konsentrasi Radon-222 dalam Gas Tanah untuk Deteksi Distribusi Permeabilitas di Daerah Panas Bumi Tampomas, Jawa Barat

Rasi Prasetio, Neneng Laksminingpuri, Evarista Ristin Pujiindiyati

DOI: http://dx.doi.org/10.55981/eksplorium.2020.5642

Abstract


ABSTRAK Daerah upflow dalam sistem panas bumi merupakan daerah dengan permeabilitas yang tinggi sebagai lintasan naiknya fluida panas bumi ke permukaan, yang umumnya ditandai dengan adanya fumarol di permukaan. Gunung Tampomas, Jawa Barat, merupakan salah satu lokasi potensi panas bumi yang memiliki manifestasi berupa mata air panas, namun tidak memiliki fumarol atau steam vent. Zona permeabel atau upflow sulit untuk diidentifikasi. Isotop 222Rn merupakan isotop geogenik yang konsentrasinya di dalam gas tanah dapat menunjukkan permeabilitas, baik permeabilitas primer maupun sekunder (struktur). Serangkaian pengukuran 222Rn dalam gas tanah telah dilakukan pada 56 titik di sekitar Gunung Tampomas untuk melihat anomali kandungan 222Rn dengan menggunakan metode statistik, serta relasinya antara daerah dengan permeabilitas tinggi dengan struktur geologi dan manifestasi panas bumi. Hasil pengukuran dan evaluasi statistik menunjukkan bahwa konsentrasi 222Rn terbagi menjadi konsentrasi rendah (latar), konsentrasi tinggi, dan anomali. Nilai latar berada di 16 lokasi berada di bawah 825 Bq/m3, sementara konsentrasi tinggi di 32 lokasi antara 825–7688 Bq/m3 dan anomali di 8 lokasi di atas 7688 Bq/m3. Sebagian besar lokasi dengan konsentrasi 222Rn tinggi dan anomali letaknya tidak berdekatan dengan kelurusan struktur, Seluruh pengukuran yang berdekatan dengan mata air panas memiliki konsentrasi 222Rn tinggi dan anomali. Mata air panas Ciseupan merupakan pengecualian yang mengindikasikan air panas tersebut keluar secara lateral (outflow). Selain itu, tidak ada indikasi korelasi antara konsentrasi 222Rn dengan elevasi lokasi pengukuran. Proses perpindahan 222Rn dari reservoir ke permukaan diperkirakan melalui mekanisme gas pembawa yang berasal dari reservoir panas bumi melalui zona permeabel.

ABSTRACT Upflow zone in the geothermal system is a zone with high permeability that serves as a path for geothermal fluid to ascend to the surface, which usually marked with fumarole at the surface. Mount Tampomas, West Java, is a potential geothermal site with some thermal manifestation in the form of hot springs, but no fumarole or steam vent exists. The up-flow or the permeable zone is difficult to identify. 222Rn isotope is a radiogenic isotope that its concentration in soil gas can infer primary permeability as well as secondary permeability (structure). Series of 222Rn measurement in soil gas has been performed from 56 sampling positions around Mount Tampomas to evaluate 222Rn anomaly by a statistical method and its relation with high permeability area, geological structure, and geothermal manifestation. The measurement and statistical evaluation results show that 222Rn concentration clustered into low (background), high, and anomaly concentration. The background values in 16 places are below 825 Bq/m3, while a high level in 32 areas between 825–7688 Bq/m3 and anomaly in 8 places above 7688 Bq/m3. Most of the locations with high and anomaly 222Rn concentrations did not locate near a structure lineament. All measurements near hot springs have a high 222Rn and anomaly. Ciseupan hot spring is an exception which may indicate that the hot spring is discharged laterally (outflow). Furthermore, there is no indication of a correlation between 222Rn with the elevation of the measurement location. The process of 222Rn transfer from the reservoir to the surface is considered by the geothermal reservoir's gas carrier mechanism through permeable zones.

 


Keywords


radon; gunung Tampomas; permeabilitas; panas bumi

References


soil gamma doses in primary schools of Batman , Turkey,” Isotopes Environ. Health Stud., Vol. 50 No. 2, pp. 226–234, 2014.

[2] V. Moreno, J. Bach, M. Zarroca, L. Font, C. Roqué, dan R. Linares, “Characterization of radon levels in soil and groundwater in the North Maladeta Fault area (Central Pyrenees) and their effects on indoor radon concentration in a thermal spa,” J. Environ. Radioact., vol. 189, pp. 1–13, 2018.

[3] M. Karpińska, S. Wołkowicz, Z. Mnich, M. Zalewski, K. Mamont-Cieśla, dan J. Kapała, “Comparative studies of health hazard from radon (Rn-222) in two selected lithologic formations in the Suwalki region (in Poland),” J. Environ. Radioact., vol. 61, no. 2, pp. 149–158, 2002.

[4] N. T. Dimova, W. C. Burnett, J. P. Chanton, dan J. E. Corbett, “Application of radon-222 to investigate groundwater discharge into small shallow lakes,” J. Hydrol., vol. 486, pp. 112–122, 2013.

[5] Y. Kiro, Y. Weinstein, A. Starinsky, dan Y. Yechieli, “Application of radon and radium isotopes to groundwater flow dynamics: An example from the Dead Sea,” Chem. Geol., vol. 411, pp. 155–171, 2015.

[6] D. R. Corbett, W. C. Burnett, P. H. Cable, dan S. B. Clark, “Radon tracing of groundwater input into Par Pond, Savannah River Site,” J. Hydrol., vol. 203, no. 1–4, pp. 209–227, 1997.

[7] L. Stellato, F. Terrasi, F. Marzaioli, M. Belli, U. Sansone, dan F. Celico, “Is 222Rn a suitable tracer of stream-groundwater interactions? A case study in central Italy,” Appl. Geochemistry, vol. 32, pp. 108–117, 2013.

[8] S. de la Cruz et al., “Radon emanation related to geothermal faults,” Int. J. Radiat. Appl. Instrumentation. Part D. Nucl. Tracks Radiat. Meas., vol. 12, no. 1–6, pp. 875–878, 1986.

[9] M. H. Al-Tamimi dan K. M. Abumurad, “Radon anomalies along faults in North of Jordan,” Radiat. Meas., vol. 34, no. 1–6, pp. 397–400, 2001.

[10] L. L. Chyi, T. J. Quick, T. F. Yang, dan C. H. Chen, “The experimental investigation of soil gas radon migration mechanisms and its implication in earthquake forecast,” Geofluids, vol. 10, no. 4, pp. 556–563, 2010.

[11] K. Koike, T. Yoshinaga, dan H. Asaue, “Characterizing long-term radon concentration changes in a geothermal area for correlation with volcanic earthquakes and reservoir temperatures: A case study from Mt. Aso, southwestern Japan,” J. Volcanol. Geotherm. Res., vol. 275, pp. 85–102, 2014.

[12] N. E. Whitehead, “Radon measurements at three New Zealand geothermal areas,” Geothermics, vol. 9, no. 3–4, pp. 279–286, 1980.

[13] J. R. J. Davidson, J. Fairley, A. Nicol, D. Gravley, dan U. Ring, “The origin of radon anomalies along normal faults in an active rift and geothermal area,” Geosphere, vol. 12, no. 5, pp. 1656–1669, 2016.

[14] I. Iskandar, F. A. Dermawan, dan J. Y. Sianipar, “Characteristic and Mixing Mechanisms of Thermal Fluid at the Tampomas Volcano , West Java , Using Hydrogeochemistry , Stable Isotope and 222 Rn Analyses,” Geosciences, vol. 8, 2018.

[15] S. Bronto, “Fasies gunung api dan aplikasinya,” J. Geol. Indones., vol. 1, no. 2, pp. 59–71, 2006.

[16] Electroconsult, “Geoscientific survey of the Tampomas geothermal field, West Java Indonesia,” Baranzate - Italy, 2010.

[17] P. H. Silitonga, “Peta Geologi Lembar Bandung, Jawa Barat, skala 1:1000.000.” Direktorat Geologi Bandung, 1973.

[18] Djuri, “Peta Geologi Lembar Arjawinangun, Jawa, Skala 1:100.000.” Pusat Penelitian dan Pengembangan Geologi, Bandung, 1995.

[19] R. Prasetio, N. Laksminingpuri, dan S. Satrio, “Karakteristik Kimia Dan Isotop Fluida Panas Bumi Daerah Gunung Tampomas, Jawa Barat,” Ris. Geol. dan Pertamb., vol. 28, no. 1, p. 1, 2018.

[20] H. Kojima dan K. Nagano, “The influence of meteorological and soil parameters on radon exhalation,” in Proceedings of Radon in the Living Environment, Athens, Greece, pp. 627–642, 1999.

[21] F. Kulali, I. Akkurt, dan N. Özgür, “The effect of meteorological parameters on radon concentration in soil gas,” Acta Phys. Pol. A, vol. 132, no. 3, pp. 999–1001, 2017.

[22] C. Cosma, A. Cucoş-Dinu, B. Papp, R. Begy, dan C. Sainz, “Soil and building material as main sources of indoor radon in Bâiţa-ştei radon prone area (Romania),” J. Environ. Radioact., vol. 116, pp. 174–179, 2013.

[23] A. J. Sinclair, “Selection of treshold values in geochemical data,” vol. 3, pp. 129–149, 1974.

[24] D. Risdianto dan D. Kusnadi, “The Application of a Probability Graph in Geothermal Exploration,” Proc. World Geotherm. Congr. 2010 Bali, Indones., pp. 25–29, 2010.

[25] N. K. Phuong, A. Harijoko, R. Itoi, dan Y. Unoki, “Water geochemistry and soil gas survey at Ungaran geothermal field, central Java, Indonesia,” J. Volcanol. Geotherm. Res., vol. 229–230, pp. 23–33, 2012.

[26] Suryantini, “Statistical Analysis of Mercury Data from Soil Survey in Non-volcanic Geothermal System: A Case Study in Sulawesi,” Procedia Earth Planet. Sci., vol. 6, pp. 212–218, 2013.

[27] J. S. Caine, J. P. Evans, and C. B. Forster, “Fault zone architecture and permeability structure,” Geology, vol. 24, no. 11, pp. 1025–1028, 1996.

[28] Z. Chen, Y. Li, Z. Liu, J. Wang, X. Zhou, dan J. Du, “Radon emission from soil gases in the active fault zones in the Capital of China and its environmental effects,” Sci. Rep., vol. 8, no. 1, pp. 1–12, 2018.

[29] L. Malmqvist, M. Isaksson, dan K. Kristiansson, “Radon migration through soil and bedrock,” Geoexploration, vol. 26, no. 2, pp. 135–144, 1989.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.