Proses Pembentukan dan Asal Material Formasi Kayasa di Halmahera Berdasarkan Unsur Jejak dan Unsur Tanah Jarang

Ronaldo Irzon

DOI: http://dx.doi.org/10.55981/eksplorium.2019.5445

Abstract


ABSTRAK

Kerumitan pembentukan batuan di Pulau Halmahera dipengaruhi konvergensi setidaknya tiga lempeng besar dan posisinya yang berada dalam kolisi aktif dua busur. Formasi Kayasa adalah salah satu dari empat satuan batuan gunung api di Pulau Halmahera. Analisis petrografi, unsur jarang, dan unsur tanah jarang (UTJ) dimanfaatkan untuk mempelajari proses pembentukan maupun asal materi batuan Formasi Kayasa. Mikroskop bipolar dimanfaatkan pada studi petrografi sedangkan Inductively Coupled Plasma-Mass Spectrometry digunakan untuk analisis kandungan unsur jejak dan unsur tanah jarang terhadap tujuh sampel segar dan empat batuan teralterasi maupun lapuk pada domain Formasi Kayasa. Seluruh sampel segar diklasifikasikan sebagai andesit-basalt berdasarkan perbandingan komposisi kuarsa, K-felspar, dan plagioklas. Kristalisasi fraksional plagioklas diduga berperan penting dalam proses pembentukan Formasi Kayasa. Batuan segar pada studi ini diperkirakan terkristalisasi pada kondisi oksidatif dalam lingkungan laut sedangkan batuan teralterasi atau lapuk terbentuk pada lingkungan reduktif di atas permukaan laut. Berdasarkan pengamatan megaskopis dan pola diagram laba-laba UTJ, material pembentukan Formasi Kayasa sangat mungkin berasal dari lempeng samudera.

ABSTRACT

The complexity of rock formation on Halmahera Island is influenced by convergences of at least three main plates and is located in the active collision of two arcs. The Kayasa Formation is one of four volcanic rock units on Halmahera Island. Petrographic analysis, rare elements, and rare earth elements (REE) are applied in studying the rock emplacement process and the material source of Kayasa Formation. Bipolar microscopy is utilized in petrographic studies while Inductively Coupled Plasma-Mass Spectrometry is used for measuring the trace and rare earth elements compositions in seven fresh samples and four altered/weathered rocks in Kayasa Formation’s domain. The fresh samples are classified as andesite-basalt based on quartz, K-feldspar, and plagioclase modal composition. Plagioclase fractional crystallization is thought to play an important role in the crystallization of Kayasa Formations. Fresh rocks in this study tend to crystallize under oxidative conditions in the marine environment, whilst altered or weathered ones formed in a reductive environment above sea level. Based on megascopic observations and REE patterns, the material of Kayasa Formation is very likely derived from the ocean plate.


Keywords


Formasi Kayasa; geokimia; kritalisasi fraksional plagioklas; pola UTJ

References


[1] R. Hall, M. G. Audley-Charles, F. T. Banner, S. Hidayat, and S. L. Tobing, “Late Palaeogene–Quaternary geology of Halmahera, Eastern Indonesia: initiation of a volcanic island arc,” J. Geol. Soc. London., vol. 145, no. 4, pp. 577–590, 1988.

[2] R. Hall, “Plate boundary evolution in the Halmahera region, Indonesia,” Tectonophysics, vol. 144, no. 4, pp. 337–352, 1987.

[3] A. S. Hakim and R. Hall, “Tertiary volcanic rocks from the Halmahera Arc, eastern Indonesia,” J. Southeast Asian Earth Sci., vol. 6, no. 3–4, pp. 271–287, 1991.

[4] T. Apandi and D. Sudana, Peta Geologi Lembar Ternate, Maluku Utara, Bandung: Pusat Pengembangan dan Penelitian Geologi, 1980

[5] R. Hall, J. R. Ali, and C. D. Anderson, “Cenozoic motion of the Philippine Sea plate: palaeomagnetic evidence from eastern Indonesia,” Tectonics, vol. 14, no. 5, pp. 1117–1132, 1995.

[6] S. Baker and J. Malaihollo, “Dating of Neogene igneous rocks in the Halmahera region: arc initiation and development,” Geol. Soc. London, Spec. Publ., vol. 106, no. 1, pp. 499–509, 1996.

[7] R. Irzon and B. Abdullah, “Geochemistry of Ophiolite Complex in North Konawe, Southeast Sulawesi,” Eksplorium Bul. Pus. Teknol. Bahan Galian Nukl., vol. 37, no. 2, pp. 101–114, 2016.

[8] R. Irzon, “Geochemistry of Late Triassic weak Peraluminous A-Type Karimun Granite, Karimun Regency, Riau Islands Province,” Indones. J. Geosci., vol. 4, no. 1, pp. 21–37, 2017.

[9] R. Irzon, “Comagmatic Andesite and Dacite in Mount Ijo, Kulonprogo: A Geochemistry Perspective,” J. Geol. dan Sumberd. Miner., vol. 19, no. 4, pp. 221–231, 2018.

[10] M. G. Andrews and A. D. Jacobson, “The radiogenic and stable Sr isotope geochemistry of basalt weathering in Iceland: Role of hydrothermal calcite and implications for long-term climate regulation,” Geochim. Cosmochim. Acta, vol. 215, pp. 247–262, 2017.

[11] P. A. E. P. von Strandmann et al., “Experimental determination of Li isotope behaviour during basalt weathering,” Chem. Geol., vol. 517, pp. 34–43, 2019.

[12] U. Hartono and S. Suyono, “Identification of Adakite from The Sintang Intrusives In West Kalimantan,” J. Geol. dan Sumberd. Miner., vol. 16, no. 3, pp. 173–178, 2006.

[13] C. Zhanheng, “Global rare earth resources and scenarios of future rare earth industry,” J. rare earths, vol. 29, no. 1, pp. 1–6, 2011.

[14] W. V Boynton, Cosmochemistry of the rare earth elements: meteorite studies, in: Developments in geochemistry, vol. 2, Elsevier, 1984, pp. 63–114.

[15] X. Wang et al., “Geochemistry of high-Mg andesites from the early Cretaceous Yixian Formation, western Liaoning: Implications for lower crustal delamination and Sr/Y variations,” Sci. China Ser. D Earth Sci., vol. 49, no. 9, pp. 904–914, 2006.

[16] Y. Chen, Y. Zhang, D. Graham, S. Su, and J. Deng, “Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China,” Lithos, vol. 96, no. 1–2, pp. 108–126, 2007.

[17] M. J. Defant and M. S. Drummond, “Derivation of some modern arc magmas by melting of young subducted lithosphere,” Nature, vol. 347, no. 6294, p. 662, 1990.

[18] P. R. Castillo, “Adakite petrogenesis,” Lithos, vol. 134, pp. 304–316, 2012.

[19] M. Kolb, A. Von Quadt, I. Peytcheva, C. A. Heinrich, S. J. Fowler, and V. Cvetković, “Adakite-like and normal arc magmas: distinct fractionation paths in the East Serbian segment of the Balkan–Carpathian arc,” J. Petrol., vol. 54, no. 3, pp. 421–451, 2012.

[20] K. L. Zaw, L. D. Setijadji, I. W. Warmada, and K. Watanabe, “Petrogenetic interpretation of granitoid rocks using multicationic parameters in the Sanggau area, Kalimantan island, Indonesia,” J. Appl. Geol., vol. 3, no. 1, 2011.

[21] R. Irzon, I. Syafri, J. Hutabarat, and P. Sendjaja, “REE Comparison Between Muncung Granite Samples and their Weathering Products, Lingga Regency, Riau Islands,” Indones. J. Geosci., vol. 3, no. 3, pp. 149–161, 2016.

[22] W.V. Boynton, Geochemistry of Rare Earth Elements: Meteorite Studies. In: P. Henderson, Ed., Rare Earth Element Geochemistry, New York: Elsevier, pp. 63-114, 1984.

[23] W. Hsu, “Rare earth element geochemistry and petrogenesis of Miles (IIE) silicate inclusions,” Geochim. Cosmochim. Acta, vol. 67, no. 24, pp. 4807–4821, 2003.

[24] Y. Wu and Y. Zheng, “Genesis of zircon and its constraints on interpretation of U-Pb age,” Chinese Sci. Bull., vol. 49, no. 15, pp. 1554–1569, 2004.

[25] C. V. D. Rao, M. Santosh, R. Purohit, J. Wang, X. Jiang, and T. Kusky, “LA-ICP-MS U–Pb zircon age constraints on the Paleoproterozoic and Neoarchean history of the Sandmata Complex in Rajasthan within the NW Indian Plate,” J. Asian Earth Sci., vol. 42, no. 3, pp. 286–305, 2011.

[26] M. Z. El-Bialy and K. A. Ali, “Zircon trace element geochemical constraints on the evolution of the Ediacaran (600–614 Ma) post-collisional Dokhan Volcanics and Younger Granites of SE Sinai, NE Arabian–Nubian Shield,” Chem. Geol., vol. 360, pp. 54–73, 2013.

[27] A. Fornelli, A. Langone, F. Micheletti, A. Pascazio, and G. Piccarreta, “The role of trace element partitioning between garnet, zircon and orthopyroxene on the interpretation of zircon U–Pb ages: an example from high-grade basement in Calabria (Southern Italy),” Int. J. Earth Sci., vol. 103, no. 2, pp. 487–507, 2014.

[28] P. Koutsovitis, A. Magganas, and A. Katerinopoulos, “Calc-alkaline volcanic rocks in mélange formations from the South Othris region, Greece: Petrogenetic and geotectonic implications,” Geochem Miner. Pet., vol. 47, pp. 79–95, 2009.

[29] T. El-Hasan, A. Al-Malabeh, and K. Komuro, “Rare Earth Elements geochemistry of the Cambrian shallow marine manganese deposit at Wadi Dana, south Jordan,” Jordan J. Earth Environ. Sci., vol. 1, no. 1, pp. 45–52, 2008.

[30] R. Kerrich, N. Said, C. Manikyamba, and D. Wyman, “Sampling oxygenated Archean hydrosphere: Implications from fractionations of Th/U and Ce/Ce* in hydrothermally altered volcanic sequences,” Gondwana Res., vol. 23, no. 2, pp. 506–525, 2013.

[31] N. Öksüz and N. Okuyucu, “Mineralogy, geochemistry, and origin of Buyukmahal manganese mineralization in the Artova ophiolitic complex, Yozgat, Turkey,” J. Chem., vol. 2014, 2014.

[32] K. Hashizume, D. L. Pinti, B. Orberger, C. Cloquet, M. Jayananda, and H. Soyama, “A biological switch at the ocean surface as a cause of laminations in a Precambrian iron formation,” Earth Planet. Sci. Lett., vol. 446, pp. 27–36, 2016.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.