Mobilitas Uranium pada Endapan Sedimen Sungai Aktif di Daerah Mamuju, Sulawesi Barat

Frida Rosidatul Mu’awanah, Bambang Priadi, Widodo Widodo, I Gde Sukadana, Rian Andriansyah

DOI: http://dx.doi.org/10.55981/eksplorium.2018.4953

Abstract


ABSTRAK

Mamuju merupakan daerah yang memiliki nilai laju dosis radiasi (radioaktifitas) tinggi. Daerah penelitian terdiri dari 6 sektor yaitu Sektor Ahu, Orobatu, Takandeang, Botteng, Pangasaan, dan Taan. Variasi batuan pada daerah penelitian tidak mencerminkan distribusi uranium, sehingga diperlukan metode geokimia untuk mengetahui distribusi uranium pada sistem drainase. Penelitian ini bertujuan untuk memberikan gambaran mobilitas dan distribusi uranium pada sistem drainase dengan menggunakan sampel sedimen sungai aktif. Analisis mobilitas uranium menggunakan persen labil yang didapatkan dari perbandingan uranium total dan uranium labil. Nilai uranium total didapatkan dari pengukuran X-Ray fluorescence spectrometry dan nilai uranium labil didapatkan dari pengukuran labile fluorimetry. Pengambilan sampel dilakukan pada 4 lokasi potensial berdasarkan data radiometri. Hasil analisis menunjukkan Sektor Ahu memiliki nilai anomali uranium labil >113,44 ppm, Sektor Pangasaan dengan nilai anomali uranium labil >168,63 ppm, Sektor Takandeang dengan nilai anomali uranium labil >74,36 ppm, dan Sektor Botteng dengan nilai anomali uranium labil >84,23 ppm. Tipe anomali yang teridentifikasi pada dua sektor, yaitu anomali pada sektor Ahu berhubungan dengan presipitasi hidrolisat uranium terlarut pada endapan sungai dari lava Ahu dan breksi Tapalang, sementara anomali pada Sektor Takandeang berhubungan dengan pengayaan permukaan uranium in situ pada tanah dan batuan lava Takandeang.

 

ABSTRACT

Mamuju is an area that has a high dose rate (radioactivity) value. The research area consists of 6 sectors namely Ahu, Orobatu, Takandeang, Botteng, Pangasaan, and Taan Sector. Lithological distribution does not represent the distribution of uranium; therefore geochemical method is needed to observe the distribution of uranium in the drainage system. The aim of this research is to provide an overview of the mobility and distribution of uranium in the drainage system using stream sediment. Uranium mobility analysis uses labile percent obtained from the ratio of total uranium and labile uranium, the total uranium value obtained from the measurement of X-Ray fluorescence spectrometry and the value of labile uranium obtained from measurement of labile fluorimetry. The sample taken from 4 potential areas based on radiometric value Map. The result of analysis shows that Ahu Sector has labile uranium anomaly >113.44 ppm, Pangasaan Sector with labile uranium anomaly >168.63 ppm, Takandeang Sector with uranium labile anomaly values >74.36 ppm, and Botteng Sector with uranium labile anomaly >84.23 ppm. The anomaly types identified from two sectors, namely Ahu Sector anomaly is related to the precipitation of dissolved uranium hydrolysates in stream deposit originating from Ahu lava and Tapalang breccia, while Takandeang Sector anomaly is related to the enrichment of in situ uranium in soil and Takandeang lava.


Keywords


mobilitas uranium; endapan sedimen; geokimia; Mamuju

References


[1] H. Syaeful, I. G. Sukadana, and A. Sumaryanto, “Radiometric Mapping for Naturally Occurring Radioactive Materials (NORM) Assessment in Mamuju, West Sulawesi,” Atom Indones., vol. 40, no. 1, p. 35, May 2014.

[2] I. G. Sukadana, A. Harijoko, and L. D. Setidjadji, “Tataan Tektonika Batuan Gunung Api Di Komplek Adang, Kabupaten Mamuju, Propinsi Sulawesi Barat,” 2015.

[3] International Atomic Energy Agency (IAEA), “Geochemical Exploration for Uranium,” Vienna, 1988.

[4] F. D. Indrastomo, I. G. Sukadana, A. Saepuloh, A. H. Harsolumakso, and D. Kamajati, “Interpretasi Vulkanostratigrafi Daerah Mamuju Berdasarkan Analisis Citra Landsat-8,” Eksplorium Buletin Pusat Teknologi Bahan Galian Nuklir, vol. 36, no. 2. 29-Mar-2016.

[5] J. Wang, J. Liu, H. Li, Y. Chen, T. Xiao, G. Song, D. Chen, and C. Wang, “Uranium and thorium leachability in contaminated stream sediments from a uranium minesite,” J. Geochemical Explor., vol. 176, pp. 85–90, 2017.

[6] W. R. O. Jakob, G. C. Murphy, and M. C. B. Smit, Comparison Of Total And Cold-Extractable Uranium In Stream Sediments Of The Southwestern Karoo Supergroup , South Africa, no. January. Palindaba, Pretoria: Atomic Energy Board, South Africa, 1979.

[7] K. F. Smith, N. D. Bryan, A. N. Swinburne, P. Bots, S. Shaw, L. S. Natrajan, J. F. W. Mosselmans, F. R. Livens, and K. Morris, “U(VI) behaviour in hyperalkaline calcite systems,” Geochim. Cosmochim. Acta, vol. 148, pp. 343–359, 2015.

[8] R. M. Hazen, R. C. Ewing, and D. A. Sverjensky, “Evolution of uranium and thorium minerals,” Am. Mineral., vol. 94, no. 10, pp. 1293–1311, 2009.

[9] F. D. Indrastomo, I. G. Sukadana, A. Saepuloh, and A. H. H, “Integrated Radiometric Mapping using Field Based and Remote Sensing Techniques for Uranium and Thorium Exploration at Mamuju Region , West Sulawesi , Indonesia,” no. October, 2015.

[10] M. S. Alam and T. Cheng, “Uranium release from sediment to groundwater: Influence of water chemistry and insights into release mechanisms,” J. Contam. Hydrol., vol. 164, pp. 72–87, 2014.

[11] S. A. Cumberland, G. Douglas, K. Grice, and J. W. Moreau, “Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes,” Earth-Science Rev., vol. 159, pp. 160–185, 2016.

[12] G. Cinelli, F. Tondeur, B. Dehandschutter, P. Bossew, T. Tollefsen, and M. De Cort, “Mapping uranium concentration in soil : Belgian experience towards a European map,” J. Environ. Radioact., vol. 166, pp. 220–234, 2017.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.