Pola Tahanan Jenis dan Konduktivitas Batuan Mengandung Mineral Radioaktif di Botteng dan Takandeang, Mamuju, Sulawesi Barat
DOI: http://dx.doi.org/10.55981/eksplorium.2017.3540
Abstract
Abstrak
Kegiatan penyelidikan umum mineral radioaktif di daerah Mamuju, Sulawesi Barat merupakan tindak lanjut dari hasil pengukuran radioaktivitas lingkungan yang menunjukkan adanya nilai radioaktivitas tinggi. Kandungan mineral radioaktif yang cukup tinggi ditemukan antara lain di Desa Botteng dan Desa Takandeang yang tersusun oleh batuan berkomposisi leusit-basal tetapi karakteristik bawah permukaan daerah ini belum diketahui. Untuk mengetahui karakteristik geologi bawah permukaan, terkait dengan mineralisasi Uranium dan Thorium di daerah Botteng dan Takandeang, pengukuran geofisika menggunakan metode tahanan jenis dan polarisasi terimbas (Induced Polarization/IP) dilakukan. Pengukuran tersebut dilakukan menggunakan konfigurasi Wenner dan dipole-dipole, dimulai dengan pembuatan enam jalur pengukuran, masing-masing tiga jalur: GF/BTGY-01, GF/BTGK-02, dan GF/BTGK-04 di Botteng, dan tiga jalur lainnya: GF/TKDK-01, GF/TKDK-07, dan GF/TKDY-06 di Takandeang. Pengukuran dilakukan dengan memotong arah kemenerusan anomali radiometri permukaan. Hasil pengukuran menunjukkan keterdapatan anomali berada pada sebaran batuan autobreksia yang terlihat jelas di lokasi GF/TKDY-6, GF/TKDK-07, dan GF/BTGK-04. Beberapa indikasi mineralisasi di permukaan teridentifikasi di penampang GF/BTGK-02 dan GF/TKDK-01, dicirikan dengan anomali-anomali chargeabilitas >25,14 ms di lintasan GF/BTGK-02 dan 81,4 ms di GF/TKDK-01. Anomali yang signifikan direkomendasikan sebagai lokasi pemboran.
Abstract
The general investigation activities of radioactive minerals in Mamuju Area, West Sulawesi is a respon of the environmental radioactivity measurement result, which shows the existence of high radioactivity value. High radioactive mineral content found in Botteng and Takandeang Villages. From the outcrops, they composed of leucite-basalt rocks; meanwhile the subsurface characteristics of this area are unknown. To characterize the subsurface geology, related to uranium and thorium mineralization in Botteng and Takandeang area, geophysical measurement conducted using resistivity and Induced Polarization (IP) methods. The measurements carried out using Wenner and dipole-dipole configurations. The measurements started with the creation of six measurement paths where three lines: GF/BTGY-01, GF/BTGK-02, and GF/BTGK-04 are in Botteng and three other lines: GF/TKDK-01, GF/TKDK-07 and, GF/TKDY-06 are in Takandeang. Measurements conducted by crossing the surface radiometric anomaly distribution. The result showed anomaly occurences on autobreccia distribution in GF/TKDY-6, GF/TKDK-07, and GF/BTGK-04 locations. Several mineralization indication on surface identified in GF/BTGK-0, and GF/TKDK-01 sections, charaterized by chargeability anomalies more than 25.14 ms and 81.4 ms respectively. All significant anomalies are recomended as drilling location.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
[1] D. Iskandar, Syarbaini, and Kusdiana, “Map of Environmental Gamma Dose Rate of Indonesia,” National Nuclear Energy Agency, Jakarta, 2014.
[2] H. Syaeful, I. G. Sukadana, and A. Sumaryanto, “Radiometric Mapping for Naturally Occurring Radioactive Materials (NORM) Assessment in Mamuju, West Sulawesi,” Atom Indones., vol. 40, no. 1, pp. 33–39, 2014.
[3] I. G. Sukadana, A. Harijoko, and L. D. Setijadji, “Tectonic Setting of Adang Volcanic Complex in Mamuju Region, West Sulawesi Province,” Eksplorium, vol. 36, no. 1, pp. 31–44, 2015.
[4] I. G. Sukadana, F. D. Indrastomo, and H. Syaeful, “Geology and Radionuclide Ratio Mapping For Radioactive Mineral Exploration in Mamuju, West Sulawesi,” in Prosiding Seminar Teknologi Energi Nuklir, 2015, pp. 140–147.
[5] F. D. Indrastomo, I. G. Sukadana, A. Saepuloh, A. H. Harsolumakso, and D. Kamajati, “Volcanostratigraphy Interpretation of Mamuju Area Based on Landsat-8 Imagery Analysis,” Eksplorium, vol. 36, no. 2, pp. 71–88, 2016.
[6] W. Lawrie, Fundamentals of Geophysics, 2nd Edition. New York: Cambridge University Press, 2007.
[7] A. A. Kaufman and B. I. Anderson, Methods of Electrical Profiling and Mapping, 1st ed., vol. 44, no. 10. Elsevier B.V., 2010.
[8] M. H. Loke, “Tutorial : 2-D and 3-D Electrical Imaging Surveys,” 2001.
[9] A. Binley, “Tools and Techniques: Electrical Methods,” in Treatise on Geophysics, Elsevier B.V., 2015, pp. 233–259.
[10] C. J. Mwenifumbo, B. E. Elliott, C. W. Jefferson, G. R. Bernius, and K. A. Pflug, “Physical Rock Properties from the Athabasca Group: Designing Geophysical Exploration Models for Unconformity Uranium Deposits,” J. Appl. Geophys., vol. 55, no. 1–2, pp. 117–135, 2004.
[11] J. Park, K. H. Lee, H. Seo, J. Ryu, and I. M. Lee, “Role of Induced Electrical Polarization to Identify Soft Ground/Fractured Rock Conditions,” J. Appl. Geophys., vol. 137, pp. 63–72, 2017.
[12] G. V Gurin, A. V Tarasov, Y. T. Il ’in, and K. V Titov, “Transient Characteristics of Induced Polarization in Inhomogeneous Media (from Results of 2D Numerical Simulation),” Russ. Geol. Geophys., vol. 58, pp. 624–634, 2017.
[13] J. L. Porsani, V. R. Elis, and F. Y. Hiodo, “Geophysical Investigations for the Characterization of Fractured Rock Aquifers in Itu, SE Brazil,” J. Appl. Geophys., vol. 57, no. 2, pp. 119–128, 2005.
[14] H. F. Liu, J. X. Liu, R. W. Guo, X. Z. Tong, L. Gong, and Y. H. Peng, “Development of Multi-Channel Observation and Inversion for IP Electrical Sounding Method,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 24, no. 3, pp. 816–823, 2014.
[15] I. G. Sukadana, H. Syaeful, F. D. Indrastomo, K. S. Widana, and E. Rakhma, “Identification of Mineralization Type and Specific Radioactive Minerals in Mamuju, West Sulawesi,” J. East China Univ. Technol., vol. 39, no. December, pp. 39–48, 2016.
[16] D. Haryanto, Supriyanto, B. Soetopo, and A. J. Karunianto, “Interpretasi Deposit Uranium Berdasarkan Data Tahanan Jenis dan Polarisasi Terinduksi di Sektor Rabau Hulu,” Eksplorium, vol. 36, no. 2, pp. 97–108, 2015.
[17] K. Z. Seminsky, R. M. Zaripov, and V. V. Olenchenko, “Interpretation of Shallow Electrical Resistivity Images of Faults: Tectonophysical Approach,” Russ. Geol. Geophys., vol. 57, no. 9, pp. 1349–1358, 2016.
Refbacks
- There are currently no refbacks.
Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)
National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.