Geochemistry of Ophiolite Complex in North Konawe, Southeast Sulawesi

Ronaldo Irzon, Baharuddin Abdullah

DOI: http://dx.doi.org/10.55981/eksplorium.2016.2868

Abstract


ABSTRACT

Southeast Sulawesi is crosscutted by Lasolo Fault into two geological provinces: Tinondo and Hialu. Tinondo Geological Province is occupied largely by Ophiolite Complex in the northern part of Southeast Arm of Sulawesi. No study was conducted in relation to the geochemistry composition of Ophiolite Complex in North Konawe Regency. The aim of this study is to describe the ultramafic rock of the Ophiolite Complex in North Konawe Regency using field, geochemical, and petrographical analysis. Megascopically, the selected nine samples are described as greyish to blackish and fine to medium grains ultramafic rocks, which consist of pyroxene and olivine. Microscope, X-Ray Fluorescence (XRF), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) devices were used to obtain both petrography and geochemistry data. Major oxides data confirm that the selected samples are classified into ultramafic rocks as SiO2, MgO, and Fe2O3T are the most abundant oxides. The studied samples presumably came from arc tholeiitic environment tectonic setting. Ultramafic rocks often contain promising economic metals whereas the average numbers of Ni, Mn, Cr, and Co of this study are 2,675; 1,074; 2,386; and 117 ppm respectively. The rocks are generally enriched in high field strength elements whilst rare earth elements value are low, ranging from 2.11 to 7.10 ppm. Microscopically, samples can be classified into three groups: olivine-hornblende pyroxenite, lherzolite, and olivine websterite. Geochemical data describes more about the discriminant analysis of the groups.

 

ABSTRAK

Wilayah Sulawesi Tenggara dipotong oleh Sesar Lasolo yang membagi daerah ini menjadi dua lajur: Tinondo dan Hialu. Lajur Tinondo diisi sebagian besar oleh Komplek Ophiolit, yang berada di bagian utara dari Lengan Tenggara Sulawesi. Belum ada studi yang terfokus kepada kandungan geokimia Komplek Ophiolit tersebut di wilayah Kabupaten Konawe Utara.Studi ini bertujuan untuk mempelajari karakter batuan ultramafik dari Komplek Ophiolit di Kabupaten Konawe Utara melalui kegiatan lapangan, analisis geokimia, dan analisis petrografi. Secara megaskopis, sembilan contoh batuan terpilih teridentifikasi sebagai batuan ultramafik berwarna kelabu hingga hitam, berukuran butir sedang hingga halus, dan mengandung piroksen maupun olivine. Perangkat mikroskop, X-Ray Fluorescence (XRF), dan Inductively Coupled Plasma Mass Spectrometry (ICP-MS) dimanfaatkan untuk memperoleh data geokimia maupun mikroskopis. Data oksida utama mengklasifikasikan contoh terpilih ke dalam batuan utramafik dengan SiO2, MgO, dan Fe2O3T sebagai oksida dengan kelimpahan tertinggi. Contoh terpilih mungkin terbentuk pada lingkungan busur tektonik tholeitik. Batuan ultramafik sering mengandung logam ekonomis dengan kadar rata-rata Ni, Mn, Cr, dan Co pada studi ini adalah: 2.675, 1.074, 2.386, dan 117 ppm secara berurutan. Batuan telah mengalami pengayaan unsur high field strength elements meskipun dengan kadar unsur tanah jarang yang rendah, berkisar dari 2,11 hingga 7,10 ppm. Secara petrografi, batuan terpilih dapat dibagi menjadi tiga kelompok: olivine-hornblende pyroxenite, lherzolite, and olivine websterite. Data geokimia menjelaskan lebih lanjut mengenai perbedaan dari kelompok-kelompok tersebut.


Keywords


North Konawe; ophiolite; ultramafic; geochemistry

References


[1] K. Attoh, M. J. Evans, and M. E. Bickford, “Geochemistry of an Ultramafic-Rodingite Rock Association in The Paleoproterozoic Dixcove Greenstone Belt, Southwestern Ghana,”J. African Earth Sci., vol. 45, pp. 333–346, 2006.

[2] M. M. Hariri, “Petrogaphical and Geochemical Characteristics of The Ultramafic Roks of Jabal Zalm, Central Arabian Shield, Saudi Arabia,” Arab. J. Sci. Eng., vol. 29, no. 2A, pp. 23–133, 2004.

[3] G. J. Heggie, S. J. Barnes, and M. L. Fiorentini, “Application of lithogeochemistry in The Assessment of Nickel-Sulphide Potential in Komatiite Belts from Northern Finland and Norway,” Bull. Geol. Soc. Finl., vol. 85, pp. 107–126, 2013.

[4] A. Kumar and S. K. Maiti, “Availability of Chromium, Nickel and Other Associated Heavy Metals of Ultramafic and Serpentine Soil/Rock and in Plants,” Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 2, pp. 256–268, 2013.

[5] C. V. Sagapoa, A. Imai, and K. Watanabe, “Laterization Process of Ultramafic Rocks in Siruka, Solomon Island,” J. Nov. Carbon Resour. Sci., vol. 3, pp. 32–39, 2011.

[6] P. C. Lightfoot, “Advances in Ni-Cu-PGE Sulphide Deposit Models and Implications for Exploration Technologies,” in Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 2007, pp. 629–646..

[7] V. Balaram, S. P. Singh, M. Satyanarayanan, and K. V. Anjaiah, “Platinum Group Elements Geochemistry of Ultramafic and Associated Rocks from Pindar in Madawara Igneous Complex, Bundelkhand Massif, Central India,” J. Earth Syst. Sci., vol. 122, no. 1, pp. 79–91, 2013.

[8] F. Zaccarini, A. Idrus, and G. Garuti, “Chromite Composition and Accessory Minerals in Chromitites from Sulawesi, Indonesia: Their Genetic Significance,” Minerals, vol. 46, no. 6, 2016.

[9] Moe’tamar, “Inventarisasi Nikel di Kabupaten Konawe, Provinsi Sulawesi Tenggara,” dalamProceeding Pemaparan Hasil Kegiatan Lapangan dan Non Lapangan Tahun 2007 Pusat Sumber Daya Geologi, 2007.

[10] I. Nurhasanah, V. Isnaniawardhani, dan N. Sulaksana, “Penentuan Kawasan Pertambangan Berbasis Sektor Komoditas Unggulan Sumberdaya Nikel Kabupaten Konawe dan Konawe Utara Provinsi Sulawesi Tenggara,” Bul. Sumber Daya Geol., vol. 8, no. 2, pp. 41–53, 2013.

[11] T. R. Charlton, “Tertiary evolution of the Eastern Indonesia Collision Complex,” J. Asian Earth Sci., vol. 18, pp. 603–631, 2000.

[12] Syafrizal, K. Anggayana, dan D. Guntoro, “Karakterisasi Mineralogi Endapan Nikel Laterit di Daerah Tinanggea Kabapaten Konawe Selatan. Sulawesi Selatan,” J. Teknol. Miner., vol. 18, no. 4, pp. 211–220, 2011.

[13] E. Rusmana, D. Sukarna, E. Haryono, dan T. O. Simandjuntak, Peta Geologi Lembar Lasusua–Kendari, Sulawesi, skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi, 1993.

[14] S. Rab, Geologic Map of Indonesia, Sheet VIII, Ujungpandang, sekala 1:1.000.000. Geological Survey of Indonesia, 1975.

[15] H. Ishiga, K. Dozen, and C. Yamazaki, “Geochemical Implications of The Weathering Process of Granitoids and Formation of Black Soils-an Example From The San’in District, Southwest Japan,” Geosci. Rep. Shimane Univ., vol. 32, pp. 1–11, 2013.

[16] G. Ratie, D. Jouvin, J. Garnier, R. Oliver, S. Miska, E. Guimaraes, L. C. Veira, Y. Sivry, I. Zelano, M. Pelletier, F. Thil, and C. Quantin, “Nickel Isotope Fractionation During Tropical Weathering of Ultramafic Rocks,” Chem. Geol., vol. 402, pp. 68–76, 2015.

[17] K. K. Turekian and Wedepohl, “Distribution of the Elements in Some Major Units of Earth’s Crust,” Chem. Geol., vol. 72, pp. 175–192, 1961.

[18] H. De La Roche, J. Lettier, P. G. Claude, and M. Marchal, “A Classification of Volcanic and Plutonic Rocks Using R1–R2 Diagrams and Major Elements Analyses-Its Relationship and Current Nomenclature,” Chem. Geol., vol. 72, pp. 175–192, 1980.

[19] J. W. Shervais, “Ti-V Plots and The Petrogenesis of Modern and Ophiolitic Lavas, Earth Planet,” Sci. Lett. J., vol. 59, pp. 101–118, 1982.

[20] W. F. Mcdonough and S. Sun, “Composition of The Earth,” Chem. Geol., vol. 120, pp. 223–253, 1995.

[21] W. F. Mcdonough and S. Sun, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” Geol. Soc. Spec. Publ., vol. 42, pp. 313–345, 1989.

[22] B. Yibas, W. U. Reimold, C. R. Anhaeusser, and C. Koeberl, “Geochemistry of The Mafic Rocks of The Ophiolitic Fold and Thrust Belts of Southern Ethiopia: Constraints on The Tectonic Regime during The Neoproterozoic (900-700 MA),” Precambrian Res., vol. 121, no. 3–4, pp. 157–183, 2003.

[23] A. M. Dar, A. R. Mir, K. Anbarasu, M. Satyanarayanan, V. Balaram, D. V. S. Rao, and S. N. Charan, “Mafic and Ultramafic Rocks in Parts of the Bhavani Complex, Tamil Nadu, Southern India: Geochemistry constraints,” J. Geol. Min. Res., vol. 6, no. 2, pp. 18–27, 2014.

[24] H. R. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation. London: England: Longman Scientific & Technical, 1993.

[25] D. J. DePaolo, “Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization,” Earth Planet. Sci. Lett., vol. 53, pp. 189–202, 1981.

[26] S. B. Castor and J. B. Hendrick, Rare Earth Elements, in Kogel, 7th ed. Society for Mining Metallurgy, and Exploration Inc., 2006.

[27] J. Y. Yang, M. C. Qian, S. Z. Bing, Z. X. Guo, and Z. H. Sheng, “The Early Paleozoic Tiefosi Syn-Collisional Granite in The Northern Dabie Orogen: Geochronological and Geochemical Constraints,” Sci. China Ser. D Earth Sci., vol. 50, no. 6, pp. 847–856, 2007.

[28] K. Sanematsu, T. Moriyama, L. Sotouky, and Y. Watanabe, “Laterization of Basalts and Sandstone Associated with The Enrichment of Al, Ga and Sc in The Bolaven Plateau, Southern Laos,” Bull. Geol. Surv. Japan, vol. 62, pp. 105–129, 2011.

[29] P. Kaur, N. Chaudi, A. W. Hormann, I. Razcek, M. Okrusch, S. Skora, and L. P. Baumgartner, “Two-Stage, Extreme Albitization of A-type Granites from Rajasthan, NW India,” J. Petrol., pp. 1–30, 2012.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.