Peran Kontaminasi Kerak pada Diferensiasi Magma Pembentuk Batuan Vulkanik Sungai Ampalas, Mamuju, Sulawesi Barat

Windi Anarta Draniswari, Sekar Indah Tri Kusuma, Tyto Baskara Adimedha, I Gde Sukadana

DOI: http://dx.doi.org/10.55981/eksplorium.2020.6040

Abstract


ABSTRAK Anomali radiometri telah ditemukan di area Sungai Amplas pada bongkah batuan vulkanik. Nilai yang terukur dari spektrometer gama adalah 787 ppm eU dan 223 ppm eTh. Penemuan ini menarik untuk pengembangan eksplorasi. Studi lebih lanjut diperlukan untuk mengetahui karekteristik batuan pembawa mineral radioaktif dari sampel in-situ. Penelitian ini bertujuan untuk mengetahui karakteristik petrologi dan geokimia batuan vulkanik Ampalas sebagai studi awal untuk mengetahui proses akumulasi mineral radioaktif pada batuan vulkanik Ampalas. Metodologi yang digunakan meliputi pengamatan lapangan, pengambilan sampel batuan, analisis petrografi dan X-Ray Fluorescence (XRF). Batuan vulkanik ampalas tersusun atas ponolit, foidit, dan foid-syenit. Tekstur batuannya terdiri dari porfiritik, aliran, rim piroksen, zoning, pseudo-leusit, korosi, inklusi mafik, dan sieve. Karakteristik geokimia menunjukkan alkalinitas tinggi dan indikasi pengayaan mineral radioaktif yang tersebar dalam batuan. Proses magmatis yang berperan dalam pembentukan batuan vulkanik adalah fraksionasi kristal (fraksionasi leusit dan alkali felspar), asimilasi kerak kontinen, dan pencampuran magma. Interaksi antara magma dan kerak menyebabkan diferensiasi magma berkelanjutan yang menghasilkan akumulasi uranium dan torium lebih tinggi.

ABSTRACT Anomalous radiometry has been found in Ampalas River Area on volcanic rock boulder. The values measured from gamma spectrometer are 787 ppm eU and 223 ppm eTh. This discovery is promising for exploration development. Further study need to figure the radioactive mineral bearing rock characteristic from in-situ samples. The research aim is to determine the petrology and geochemical characteristics of Ampalas volcanic rocks as preliminary study to find radioactive mineral accumulation process of Ampalas volcanic rocks. The methodologies are field observation, rock sampling, petrography, and X-Ray fluorescence (XRF) analyses. The Ampalas volcanic rocks consist of phonolite, phoidite, and phoid syenite. Their textures are porphyritic, flow, pyroxene rim, zoning, pseudo-leucite, corrosion, mafic inclusions, and sieve. The geochemical characteristics show high alkalinity and radioactive mineral enrichment disseminating on rock. The magmatic processes which play a significant role in radioactive mineral-bearing rocks formation are crystal fractionations (leucite and alkaline feldspar fractionations), continental crust assimilation, and magma mixing. Long interaction between magma and crust creates advanced magma differentiation causing higher uranium and thorium accumulation.

 

 


Keywords


Ampalas; vulkanik geokimia; kontaminasi kerak

References


[1] I. G. Sukadana, “Petrogenesis Batuan Vulkanik Adang dan Kaitannya dengan Keterdapatan Mineral Radioaktif di Kabupaten Mamuju, Sulawesi Barat,” Universitas Gadjah Mada, 2015.

[2] PTBGN BATAN, “Laporan Teknis PTBGN BATAN 2013,” Jakarta, 2013.

[3] J. D. Winter, Principles of Igneous and Metamorphic Petrology John D. Winter Second Edition, 2nd ed. London: Pearson Education Limited, 2013.

[4] S. E. Sichel, A. Motoki, S. E. Sichel, T. Vargas, J. R. Aires, S. Silva, A. Balmant, dan J. Gonçalves, “Geochemical evolution of the felsic alkaline rocks of tanguá and Rio bonito intrusive bodies , state of Rio de Janeiro , Brazil,” Geociencias, vol. 29, no. 3, pp. 291–310, 2010.

[5] A. Motoki, S. E. Sichel, T. Vargas, D. P. Melo, dan K. F. Motoki, “Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil,” An. Acad. Bras. Cienc., vol. 87, no. 4, pp. 1959–1979, 2015.

[6] K. D. Putirka, M. A. Kuntz, D. M. Unruh, dan N. Vaid, “Magma evolution and ascent at the craters of the moon and neighboring volcanic fields, Southern Idaho, USA: Implications for the evolution of polygenetic and monogenetic volcanic fields,” J. Petrol., vol. 50, no. 9, pp. 1639–1665, 2009.

[7] M. L. Renjith, “Micro-textures in plagioclase from 1994-1995 eruption, Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone,” Geosci. Front., vol. 5, no. 1, pp. 113–126, 2014.

[8] M. Cuney dan K. Kyser, “Recent and Not-So-Recent Developments in Uranium Deposits and Implications for Exploration.,” Econ. Geol., vol. 104, no. 4, pp. 600–601, 2009.

[9] M. Cuney, A. Emetz, J. Mercadier, V. Mykchaylov, V. Shunko, dan A. Yuslenko, “Uranium deposits associated with Na-metasomatism from central Ukraine: A review of some of the major deposits and genetic constraints,” Ore Geol. Rev., vol. 44, pp. 82–106, 2012.

[10] H. D. Schorscher dan M. E. Shea, “The Regional Geology of the Pocos de Caldas Alkaline Complex: Mineralogy and Geochemistry of Selected Nepheline Syenites and Phonolites,” J. Geochemical Explor., vol. 45, pp. 25–51, 1992.

[11] L. Qiu, D. P. Yan, M. Ren, W. Cao, S. L. Tang, Q. Y. Guo, L. T. Fan, J. Qiu, Y. Zhang, dan Y. W. Wang, “The source of uranium within hydrothermal uranium deposits of the Motianling mining district, Guangxi, South China,” Ore Geol. Rev., vol. 96, pp. 201–217, 2018.

[12] P. Bruneton dan M. Cuney, “Geology of uranium deposits,” in Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel, no. 1956, Elsevier Ltd, 2016, pp. 11–52.

[13] Y. S. Yuwono, R. C. Maury, R. Soeria-Atmadja, dan H. Bellon, “Tertiary and Quaternary geodynamic evolution of South Sulawesi constraints from the study of volcanic units,” Maj. Ikat. Ahli Geol. Indones., vol. 13, no. 1, pp. 32–48, 1988.

[14] B. Priadi, “Volkanisme Tersier-Kuarter di Lengan Barat Sulawesi,” Proceeding “Geologi Sulawesi dan Prospeknya” Makasar, 2009.

[15] N. Ratman dan S. Atmawinata, “Peta Geologi Lembar Mamuju dan Sekitarnya, Sulawesi, Skala 1:250.000,” Bandung, 1993.

[16] I. G. Sukadana, A. Harijoko, dan L. D. Setijadji, “Tectonic Setting of Adang Volcanic Complex in Mamuju Region, West Sulawesi Province,” Eksplorium, vol. 36, no. 1, pp. 31–44, 2015.

[17] J. Blundy dan K. Cashman, “Petrologic Reconstruction of Magmatic System Variables and Processes,” Rev. Mineral. Geochemistry, vol. 69, no. 1, pp. 179–239, 2008.

[18] M. J. Rutherford dan J. D. Devine, “Magmatic Conditions and Magma Ascent as Indicated by Hornblende Phase Equilibria Á re and Reactions in the 1995 ± 2002 Soufrie Hills Magma,” J. Petrol., vol. 44, no. 8, pp. 1433–1454, 2003.

[19] D. A. Jerram, K. J. Dobson, D. J. Morgan, dan M. J. Pankhurst, The Petrogenesis of Magmatic Systems: Using Igneous Textures to Understand Magmatic Processes. Elsevier Inc., 2018.

[20] K. Deniz dan Y. K. Kadioğlu, “Assimilation and fractional crystallization of foid-bearing alkaline rocks: Buzlukdağ intrusives, Central Anatolia, Turkey,” Turkish J. Earth Sci., vol. 25, no. 4, pp. 341–366, 2016.

[21] M. J. Streck, “Mineral Textures and Zoning as Evidence for Open System Processes,” Rev. Mineral. Geochemistry, vol. 69, no. 1, pp. 595–622, 2008.

[22] N. M. Asrial, M. F. Rosana, K. Arfiansyah, dan N. Nordin, “Petrogenesis of Andesite in Bukitcula, Baleendah District, Southern Bandung, West Java,” J. Geol. Sci. Appl. Geol., vol. 3, no. 3, pp. 1–6, 2019.

[23] A. Peccerillo dan S. R. Taylor, “Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey,” Contrib. to Mineral. Petrol., vol. 56, pp. 63–81, 1976.

[24] T. P. Mernagh dan Y. Miezitis, A Review of the Geochemical Processes Controlling the Distribution of Thorium in the Earth’s Crust and Australia’s Thorium Resources. Australia: Onshore Energy and Mineral Division, 2008.

[25] J. A. Pearce dan J. R. Cann, “Tectonic setting of basic volcanic rocks determined using trace element analyses,” Earth Planet. Sci. Lett., vol. 19, no. 2, pp. 290–300, 1973.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.