Interpretasi Bawah Permukaan Berdasarkan Distribusi Nilai Tahanan Jenis di Daerah Puspiptek, Serpong
DOI: http://dx.doi.org/10.55981/eksplorium.2018.4968
Abstract
ABSTRAK
Kawasan Pusat Penelitian Ilmu Pengetahuan dan Teknologi (PUSPIPTEK) Serpong memiliki luas 460 hektar. Sebagian besar kawasan ini merupakan ruang terbuka hijau. Seiring dengan pertumbuhan kegiatan penelitian, kebutuhan sarana infrastruktur dan bangunan juga akan semakin meningkat. Sebagai sarana strategis nasional, diperlukan desin bangunan yang kokoh untuk dan sesuai dengan kondisi bawah permukaan. Survey geolistrik dapat digunakan untuk mengetahui kondisi/informasi di bawah permukaan tanah. Tujuan penelitian ini adalah memperoleh gambaran di bawah permukaan berdasarkan distribusi nilai geolistrik tahanan jenis di area rencana pembangunan Reaktor Daya Eksperimen (RDE). Pengambilan data tahanan jenis menggunakan alat ukur resistivitymeter multichannel tipe MAE X612EM+ secara 2-D menggunakan 48 channel konfigurasi Wenner-Schlumberger. Jumlah elektroda yang digunakan adalah 48 buah dengan interval jarak antar elektroda 5 m. Berdasarkan pemodelan inversi 2-D telah dihasilkan empat model penampang lintasan yaitu line-1, line 2, line-3, dan line-4. Kesalahan data di tiap lintasan relatif kecil, kurang dari 12%. Interpretasi geologi dilakukan pada pada penampang line-2 dan line-3 menggambarkan keberadaan lapisan A, B, dan C. Lapisan A diduga berupa batuan dengan ukuran butir lempung-lanau yang mengandung material organik dengan rentang nilai tahanan jenis 2-20 ohm-m dan variasi ketebalan sekitar 1-7 m. Lapisan B diduga berupa batupasir yang memiliki rentang nilai tahanan jenis 10-90 ohm-m dengan variasi ketebalan 5-20 m. Lapisan C diduga merupakan batulempung yang memiliki rentang nilai tahanan jenis 2-5000 ohm-m dengan variasi kedalaman 10-20 m.
ABSTRACT
The area of Center for Research in Science and Technology (PUSPIPTEK) Serpong is 460 hectares wide. Most of the area is a Green Open Spaces (RTH). In the line with the growth of research activities, the need for infrastructure and building facilities also increases. As a national strategic facility, it is necessary to design buildings that are sturdy for and suitable with subsurface conditions. Geolectrical survey can be used to determine of subsurface condition/information. The purpose of this study is to obtain the ilustration of subsurface, based on the distribution of geoelectric resistivity values in the site of Experimental Power Reactor (RDE) construction. The resistivity data acquisition is using a multichannel resistivitymeter MAE X612EM+ type in 2-D by 48 channel of Wenner-Schlumberger configuration. The numbers of elctrodes used are 48 with an electrode interval of 5 m. Based on 2-D inversion model, there are four section models obtained, namely line-1, line 2, line-3, and line-4. The data error for each section is relatively small, less than 12%. Geological interpretation carried out in the section line-2 and line-3 illustrates the existence of layers A, B, and C. Layer A is interpreted as rock with silt to clay grain size containing organic material with resistivity values range 2-20 ohm-m and thickness varries in 1-7 m. Layer B is interpreted as sandstone which has a range of resistivity values from 10-90 ohm-m with thickness variations 5-20 m. Layer C is interpreted as claystone which has a range of resistivity values from 2-5000 ohm-m with depth variation in 10-20 m.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
[1] HUMAS PI Puspitek, “Profil Pusat Penelitian Ilmu Pengetahuan dan Teknologi (Puspiptek).” .
[2] Marjiyono, H. Suntoko, A. Soehaimi, Yuliastuti, and H. Syaeful, “Kelas Soil Daerah Sekitar Rencana Tapak Reaktor Daya Eksperimental (RDE) Serpong dari Data Mikrotremor,” J. Pengemb. Energi Nukl., vol. 17, no. 1, pp. 57–66, 2015.
[3] Hurriyah and R. Jannah, “Analisis Struktur Lapisan Bawah Permukaan Menggunakan Metode Geolistrik (Studi Kasus pada Kampus III IAIN Imam Bonjol Padang di Sungai Bangek Kecamatan Koto Tangah),” J. Spasial, vol. 2, pp. 28–39, 2015.
[4] H. Syaeful, Sucipta, and I. A. Sadisun, “Studi Geologi Teknik Tapak Penyimpanan Akhir Limbah Radioaktif (LRA) Demo Plant Tipe NSD Kedalaman Menengah di Puspiptek, Serpong,” Eksplorium, vol. 35, no. 1, pp. 13–28, 2014.
[5] Suntoko and Sriyana, “Penentuan Kedalaman Batuan Dasar Menggunakan Microtremor Array Di Tapak RDE Serpong,” J. Pengemb. Energi Nukl., vol. 18, no. 2, pp. 87–92, 2016.
[6] A. P. Aizebeokhai and K. D. Oyeyemi, “The Use of The Multiple-Gradient Array for Geoelectrical Resistivity and Induced Polarization Imaging,” J. Appl. Geophys., vol. 111, pp. 364–376, 2014.
[7] T. Turkandi, Sidarto, D. A. Agustianto, and M. M. P. Hadiwidjoyo, Peta Geologi Lembar Jakarta dan Kepulauan Seribu. Bandung: Puslitbang Geologi, 1992.
[8] H. Suntoko and A. B. Wicaksono, “Identifikasi Patahan pada Batuan Sedimen Menggunakan Metode Geolistrik Konfigurasi Dipole-Dipole di Tapak RDE Serpong, Banten,” J. Pengemb. Energi Nukl., vol. 19, no. 2, pp. 81–88, 2017.
[9] Suntoko and Sriyana, “Identifikasi Patahan Menggunakan Analisis Data Deformasi Tanah di Tapak RDE Serpong Fault,” J. Pengemb. Energi Nukl., vol. 38, no. 2, pp. 99–108, 2017.
[10] W. M. Telford, L. P. Geldart, and R. E. Sheriff, Applied geophysics, 2nd ed. New York: Cambridge University Press, 1990.
[11] P. Kearey, M. Brooks, and I. Hill, An Introduction to Geophysical Exploration, 3rd ed. Malden: Blackwell Science Ltd, 2002.
[12] H. Suntoko and A. B. Wicaksono, “Identifikasi Patahan pada Batuan Sedimen Menggunakan Metode Geolistrik Konfigurasi Dipole-Dipole di Tapak RDE Serpong, Banten,” J. Pengemb. Energi Nukl., vol. 19, no. 2, pp. 81–88, 2017.
[13] M. H. Loke, Tutorial : 2-D and 3-D Electrical Imaging Surveys. Geotomo Software Inc., 2004.
Refbacks
- There are currently no refbacks.
Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)
National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.