Dose Analysis of Boron Neutron Neutron Capture Therapy (BNCT) for Breast Cancer Based on Particle and Heavy Ion Transport Code System (PHITS) V.3.34

Rizky Mu'amanah, Mokhamad Tirono, Yohannes Sardjono, Isman Mulyadi Triatmoko, Gede Sutrisna Wijaya

DOI: http://dx.doi.org/10.55981/tdm.2024.7103

Abstract


Kanker payudara merupakan salah satu jenis kanker yang paling banyak dijumpai, dengan angka kejadian dan kematian yang tinggi di seluruh dunia, termasuk di Indonesia. Boron Neutron Capture Therapy (BNCT) telah diformulasikan sebagai salah satu metode terapi radiasi yang menjanjikan dalam pengobatan kanker payudara karena kemampuannya dalam memberikan dosis tinggi pada target lesi dengan kerusakan minimal pada jaringan sehat. Penelitian ini bertujuan untuk menganalisis dosis BNCT pada kanker payudara dan mengeluarkan waktu penyalinan pada dua arah yaitu anterior-posterior (AP) dan lateral kiri (LLAT). Penelitian ini menggunakan alat simulasi PHITS versi 3.34 untuk mendefinisikan geometri kanker payudara dan organ di sekitarnya serta sumber radiasi yang digunakan. Fantom yang digunakan adalah wanita dewasa ORNL dengan tumor berukuran 2 cm. Sumber neutron yang digunakan adalah akselerator dengan berkas proton 30 MeV. Konsentrasi boron yang digunakan adalah 30, 60, 90, 120, dan 150 μg/g jaringan kanker. Penelitian ini menunjukkan bahwa semakin tinggi konsentrasi boron maka semakin cepat waktu penyinaran yang dihasilkan. Untuk teknik penyinaran AP, waktu penyinaran yang dihasilkan adalah 27,62 menit, 16,14 menit, 13,12 menit, 11,05 menit, dan 9,54 menit. Sementara itu, pada arah LLAT, waktu yang dihasilkan adalah 135,23 menit, 113,46 menit, 78,23 menit, 59,70 menit, dan 48,27 menit. Konsentrasi boron sebesar 150 μg/g dipilih sebagai konsentrasi optimal dalam simulasi ini karena menghasilkan waktu penyinaran yang singkat dari setiap arah penyinaran dan memastikan dosis yang aman bagi Organs at Risk. Pada teknik penyunaran AP, dosis yang diserap oleh kulit adalah 0,46 Gy, paru ipsilateral 1,01 Gy, paru kontralateral 0,16 Gy, hati 0,21 Gy, tulang rusuk 0,61 Gy, dan jantung 0,11 Gy. Sementara itu, pada teknik penyunaran LLAT, dosis yang diserap kulit sebesar 1,03 Gy, paru ipsilateral 2,19 Gy, paru kontralateral 0,72 Gy, hati 0,17 Gy, tulang rusuk 1,62 Gy, dan jantung 0,40 Gi.


Full Text:

PDF

References


  1. H. Sung et al., “Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” A Cancer J. Clin. Cancer J Clin, pp. 1–35, 2024, doi: 10.3322/caac.21834.
  2. H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” A Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021, doi: 10.3322/caac.21660.
  3. M. Arnold et al., “Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040,” Breast, vol. 66, no. September, pp. 15–23, 2022, doi: 10.1016/j.breast.2022.08.010.
  4. S. Ekici and H. Jawzal, “Breast Cancer Diagnosis Using Thermography and Convolutional Neural Networks,” Med. Hypotheses, vol. 137, no. December 2019, 2020, doi: 10.1016/j.mehy.2019.109542.
  5. WHO, “Breast Cancer,” 2024. https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  6. D. Groheux, “Breast Cancer Systemic Staging (Comparison of Computed Tomography, Bone Scan, and 18F-Fluorodeoxyglucose PET/Computed Tomography),” PET Clin., vol. 18, no. 4, pp. 503–515, 2023, doi: 10.1016/j.cpet.2023.04.006.
  7. National Cancer Institution, “What Types Of Cancer Are Diagnosed As Stage 0 And 1 Breast Cancer?,” 2024. https://www.nationalbreastcancer.org/breast-cancer-stage-1/ (accessed Apr. 05, 2024).
  8. M. Purohit and M. Kumar, “Boron Neutron Capture Therapy: History and Recent Advances,” Mater. Today Proc., 2022, doi: 10.1016/j.matpr.2022.12.181.
  9. K. Hu et al., “Boron Agents For Neutron Capture Therapy,” Coord. Chem. Rev., vol. 405, 2020, doi: 10.1016/j.ccr.2019.213139.
  10. D. Imperio, “SS symmetry Sweet Boron : Boron-Containing Sugar Derivatives as Potential Agents for Boron Neutron Capture Therapy,” 2022.
  11. Malouff. et al., “Boron Neutron Capture Therapy: A Review of Clinical Applications,” Front. Oncol., vol. 11, no. February, 2021, doi: 10.3389/fonc.2021.601820.
  12. M. O. and H. D. Yusuke Matsuya, Hisanori Fukunaga, “Cells A Model for Estimating Dose-Rate Effects on Cell-Killing of Human Melanoma after Boron,” Cells MDPI, pp. 1–16, 2020, doi: http://dx.doi.org/10.3390/cells9051117.
  13. D. S. Chiek Quah, Y. W. Chen, and Y. H. Wu, “Dosimetric Comparison of Boron Neutron Capture Therapy, Proton Therapy and Volumetric Modulated Arc Therapy for Recurrent Anaplastic Meningioma,” Appl. Radiat. Isot., vol. 166, no. June, 2020, doi: 10.1016/j.apradiso.2020.109301.
  14. Poedjomartono, Y. Sarjono, E. Meiyanto, and H. Winarmo, “The Role of Taxanes in Breast Cancer Treatment,” Atom Indones., vol. 45, no. 3, pp. 139–146, 2019, doi: https://doi.org/10.17146/aij.2019.936.
  15. “Japanese Society of Neutron Capture THerapy,” 2024. http://www.jsnct.jp/e/about_nct/index.html
  16. H. He et al., “The basis and advances in clinical application of boron neutron capture therapy,” Radiat. Oncol., vol. 16, no. 1, pp. 1–8, 2021, doi: 10.1186/s13014-021-01939-7.
  17. G. Li, W. Jiang, L. Zhang, W. Chen, and Q. Li, “Design of Beam Shaping Assemblies for Accelerator-Based BNCT With Multi-Terminals,” Front. Public Heal., vol. 9, no. March, pp. 1–10, 2021, doi: 10.3389/fpubh.2021.642561.
  18. H. Fukuda, “Boron neutron capture therapy (Bnct) for cutaneous malignant melanoma using10 b-p-boronophenylalanine (BPA) with special reference to the radiobiological basis and clinical results,” Cells, vol. 10, no. 11, 2021, doi: 10.3390/cells10112881.
  19. K. Sajad, E. Elnaz, S. Dariush, D. Sepideh Yazdani, and K. Marzieh, “Boron neutron capture therapy for the treatment of lung cancer and assessment of dose received by organs at risk,” Arch. Pathol. Clin. Res., vol. 6, no. 1, pp. 027–031, 2022, doi: 10.29328/journal.apcr.1001032.
  20. T. Sato et al., “Recent improvements of the particle and heavy ion transport code system–PHITS version 3.33,” J. Nucl. Sci. Technol., vol. 61, no. 1, pp. 127–135, 2024, doi: 10.1080/00223131.2023.2275736.
  21. L. M. Carter et al., “PARaDIM: A PHITS-Based Monte Carlo Tool for Internal Dosimetry With Tetrahedral Mesh Computational Phantoms,” J. Nucl. Med., vol. 60, no. 12, pp. 1802–1811, 2019, doi: 10.2967/jnumed.119.229013.
  22. T. Fujimoto et al., “Anti-tumor effect of boron neutron capture therapy (BNCT) on axillary lymph node metastasis of breast cancer,” KURRI Prog Rep, p. 361, 2016.
  23. D. Seneviratne et al., “Exploring the Biological and Physical Basis of Boron Neutron Capture Therapy (BNCT) as a Promising Treatment Frontier in Breast Cancer,” Cancers (Basel)., vol. 14, no. 12, 2022, doi: 10.3390/cancers14123009.
  24. R. Pramusinta, R. Pramusinta, R. Zailani, and Y. Sardjono, “Dose Analysis in Boron Neutron-capture Cancer Therapy (BNCT) Neutron Generator Based for Breast Cancer,” Indones. J. Phys. Nucl. Appl., vol. 4, no. 1, pp. 8–11, 2019, doi: 10.24246/ijpna.v4i1.8-11.
  25. Y. S. Yeom et al., “Computation Speeds and Memory Requirements of Mesh-Type ICRP Reference Computational Phantoms in Geant4, MCNP6, and PHITS,” Health Phys., vol. 116, no. 5, pp. 664–676, 2019, doi: 10.1097/HP.0000000000000999.
  26. H. Akamatsu, K. Karasawa, T. Omatsu, Y. Isobe, R. Ogata, and Y. Koba, “First experience of carbon-ion radiotherapy for early breast cancer,” Jpn. J. Radiol., vol. 32, no. 5, pp. 288–295, 2014, doi: 10.1007/s11604-014-0300-6.
  27. R. Mutamimah and Y. Sardjono, “Unnes Physics Education Journal Otak dengan Metode Proton Therapy,” vol. 11, no. 1, 2022.
  28. “Kemenkes,” pp. 1–26, 2018.
  29. I. Iakovou, E. Giannoula, A. Gkantaifi, S. Levva, and S. Frangos, “Positron emission tomography in breast cancer: 18F- FDG and other radiopharmaceuticals,” Eur. J. Hybrid Imaging, vol. 2, no. 1, 2018, doi: 10.1186/s41824-018-0039-x.
  30. A. Fauzi, A. H. Tsurayya, A. F. Harish, and G. S. Wijaya, “Beam Shaping Assembly Optimization for Boron Neutron Capture Therapy Facility based on Cyclotron 30 MeV as Neutron Source,” vol. 35, no. 3, pp. 183–186, 2018, doi: 10.29037/ajstd.536.
  31. Made Ardana and Y. Sardjono, “OPTIMIZATION OF A NEUTRON BEAM SHAPING ASSEMBLY DESIGN FOR BNCT AND ITS DOSIMETRY SIMULATION BASED ON MCNPX Cancer begins when cells in a part of the body start to grow out of control. There are many kinds of cancer, but they all start due to the uncont,” vol. 2015, pp. 121–130, 2018, doi: 10.17146/tdm.2017.19.3.3582.
  32. H. Kumada and K. Takada, “Treatment Planning System and Patient Positioning for Boron Neutron Capture Therapy,” Ther. Radiol. Oncol., vol. 2, pp. 50–50, 2018, [Online]. Available: https://doi.org/10.21037/tro.2018.10.12
  33. H. Kurosaki, K. Okazaki, M. Takemori, E. Tate, and T. Nakamura, “The Effects of Boron Neutron Capture Therapy on the Lungs in Recurrent Breast Cancer Treatment,” Cureus, vol. 16, no. 4, pp. 1–6, 2024, doi: 10.7759/cureus.57417.
  34. N. Hu et al., “Evaluation of a treatment planning system developed for clinical boron neutron capture therapy and validation against an independent Monte Carlo dose calculation system,” Radiat. Oncol., vol. 16, no. 1, pp. 1–14, 2021, doi: 10.1186/s13014-021-01968-2.
  35. A. Rahimi et al., “Preliminary Results of Multi-Institutional Phase 1 Dose Escalation Trial Using Single-Fraction Stereotactic Partial Breast Irradiation for Early Stage Breast Cancer,” Int. J. Radiat. Oncol. Biol. Phys., vol. 112, no. 3, pp. 663–670, 2022, doi: 10.1016/j.ijrobp.2021.10.010.
  36. M. A. Gadan, S. J. González, M. Batalla, M. S. Olivera, L. Policastro, and M. L. Sztejnberg, “Reprint of Application of BNCT to the treatment of HER2+ breast cancer recurrences: Research and developments in Argentina,” Appl. Radiat. Isot., vol. 106, pp. 260–264, 2015, doi: 10.1016/j.apradiso.2015.10.009.
  37. Harish, Warsono, and Y. Sardjono, “Dose Analysis of Boron Neutron Capture Therapy (BNCT) Treatment for Lung Cancer Based on Particle and Heavy Ion Transport Code System (PHITS),” ASEAN J. Sci. Technol. Dev., vol. 35, no. 3, pp. 187–194, 2020, doi: 10.29037/ajstd.545.
  38. Kepala Badan Pengawas Tenaga Nuklir, “Peraturan Kepala Badan Pengawas Tenaga Nuklir Nomor 6 Tahun 2010 tentang Pemantauan Kesehatan untuk Pekerja Radiasi,” Peratur. Kepala Badan Pengawas Tenaga Nukl. Nomor 6 Tahun 2010 tentang Pemantauan Kesehat. untuk Pekerja Radiasi, 2010.
  39. M. Veluvolu, M. Patel, G. Narayanasamy, and T. Kim, “Definitive single fraction stereotactic ablative radiotherapy for inoperable early-stage breast cancer: A case report,” Reports Pract. Oncol. Radiother., vol. 25, no. 5, pp. 760–764, 2020, doi: 10.1016/j.rpor.2020.06.011.


Refbacks



PTKRN Digital Library Mendeley