Transmutation of Transuranic Elements as Solid Coating in Molten Salt Reactor Fuel Channel
DOI: http://dx.doi.org/10.55981/tdm.2023.6880
Abstract
The accumulation of spent nuclear fuel (SNF) is presently considered as a hindrance of the massive deployment of nuclear power plant, especially regarding the transuranic (TRU) elements. Eliminating TRU through transmutation is one of the most feasible alternative as a technical solution to solve the issue. This study explores the possibility of TRU transmutation using molten salt reactor (MSR) in a heterogeneous configuration, where a solid TRU is coated inside the fuel channel filled with liquid salt fuel. Such configuration is proposed to allow higher TRU loading into fluoride salt mixture without compromising the safety of the reactor. TRU coating was applied in consecutively outward radial fuel channel layers with coating thicknesses of 2.5 mm and 5 mm. Calculation was performed using MCNP6.2 radiation transport code and ENDF/B-VII.0 neutron cross section library. From the results, TRU coating with smaller thickness and positioned closer to the centre of the core exhibit higher transmutation efficiency due to exposure to higher neutron flux. Highest transmutation efficiency was achieved at 67.93% after 160 days of burnup. This shows a potential of achieving highly efficient TRU using heterogeneous configuration in MSR core.
Full Text:
PDFReferences
1. Dwijayanto R.A.P., Alfarisie M. Preliminary Study on Minor Actinide Incineration in RSG-GAS without Isotope Separation. GANENDRA Maj. IPTEK Nukl. 2021. 21(2):85–92.
2. Li X., Cui D., Hu G., Cai X., Chen J. Potential of transuranics transmutation in a thorium-based chloride salt fast reactor. Int. J. Energy Res. 2022. 46(12):16461–75.
3. Cohen B.L. The Nuclear Energy Option: An Alternative for the 90s. New York:Springer New York; 1990.
4. You W.S., Hong S.G. A neutronic study on advanced sodium cooled fast reactor cores with thorium blankets for effective burning of transuranic nuclides. Nucl. Eng. Des. 2014. 278:274–86.
5. Liu B., Han J., Liu F., Sheng J., Li Z. Minor actinide transmutation in the lead-cooled fast reactor. Prog. Nucl. Energy. 2020. 119:103148.
6. Liu B., Jia R., Han R., Lyu X., Han J., Li W. Minor actinide transmutation characteristics in AP1000. Ann. Nucl. Energy. 2018. 115:116–25.
7. Hu W., Jing J., Bi J., Zhao C., Liu B., Ouyang X. Minor actinides transmutation on pressurized water reactor burnable poison rods. Ann. Nucl. Energy. 2017. 110:222–9.
8. Zuhair, Dwijayanto R.A.P., Suwoto, Setiadipura T. The implication of thorium fraction on neutronic parameters of pebble bed reactor. Kuwait J. Sci. 2021. 48(3):1–16.
9. Wojciechowski A. The U-232 production in thorium cycle. Prog. Nucl. Energy. 2018. 106(March):204–14.
10. Arias F.J. Minimization of U-232 content in advanced high-conversion multirecycling thorium reactors by blanket fragmentation. Prog. Nucl. Energy. 2013. 67:18–22.
11. Ganda F., Arias F.J., Vujic J., Greenspan E. Self-Sustaining Thorium Boiling Water Reactors. Sustainability. 2012. 4:2472–97.
12. Dwijayanto R.A.P., Hermawan D.P. Investigation on Inherent Safety of One Fluid-Molten Salt Reactor (OF-MSR) with Various Starting Fuel. Tri Dasa Mega. 2020. 22(2):54–60.
13. Uguru E.H., Sani S.F.A., Khandaker M.U., Rabir M.H. Investigation on the effect of 238U replacement with 232Th in small modular reactor (SMR) fuel matrix. Prog. Nucl. Energy. 2020. 118(May 2019):103108.
14. Zhu G., Zou Y., Yan R., Tan M., Zou C., Kang X., et al. Low enriched uranium and thorium fuel utilization under once-through and offline reprocessing scenarios in small modular molten salt reactor. Int. J. Energy Res. 2019. 43(11):5775–87.
15. Korkmaz M.E., Agar O., Büyüker E. Burnup analysis of the VVER-1000 reactor using thorium-based fuel. Kerntechnik. 2014. 79(6):478–83.
16. Zhou S., Wu H., Zheng Y. Flexibility of ADS for minor actinides transmutation in different two-stage PWR-ADS fuel cycle scenarios. Ann. Nucl. Energy. 2018. 111:271–9.
17. Setiawan M.B., Kuntjoro S. Preliminary Analysis of High-Flux RSG-GAS to Transmute Am-241 of PWR’s Spent Fuel in Asian Region. in: Journal of Physics: Conference Series. 2018. p. 12004.
18. Setiawan M.B., Kuntjoro S., Husnayani I., Udiyani P.M., Surbakti T. Evaluation on transmutation of minor actinides discharged from PWR spent fuel in the RSG-GAS research reactor. Malaysian J. Fundam. Appl. Sci. 2019. 15(4):577–9.
19. Hu W., Liu B., Ouyang X., Tu J., Liu F., Huang L., et al. Minor actinide transmutation on PWR burnable poison rods. Ann. Nucl. Energy. 2015. 77:74–82.
20. Hussain M., Sohail M. Feasibility study of transmutation of minor actinides in PWR fuel assembly. in: ICET 2016 - 2016 International Conference on Emerging Technologies. 2017. pp. 16–9.
21. Washington J., King J. Optimization of plutonium and minor actinide transmutation in an AP1000 fuel assembly via a genetic search algorithm. Nucl. Eng. Des. 2017. 311:199–212.
22. Tran V.T., Tran H.N., Nguyen H.T., Hoang V.K., Ha P.N.V. Study on Transmutation of Minor Actinides as Burnable Poison in VVER-1000 Fuel Assembly. Sci. Technol. Nucl. Install. 2019. 2019
23. Lau C.W., Nylén H., Insulander Björk K., Sandberg U. Feasibility study of 1/3 thorium-plutonium mixed oxide core. Sci. Technol. Nucl. Install. 2014. 2014
24. Allen K., Knight T. Destruction rate analysis of transuranic targets in sodium-cooled fast reactor (SFR) assemblies using MCNPX and SCALE 6.0. Prog. Nucl. Energy. 2010. 52(4):387–94.
25. Fukaya Y., Goto M., Ohashi H., Tachibana Y., Kunitomi K., Chiba S. Proposal of a plutonium burner system based on HTGR with high proliferation resistance. J. Nucl. Sci. Technol. 2014. 51(6):818–31.
26. Ashraf O., Tikhomirov G. V. Thermal-and fast-spectrum molten salt reactors for minor actinides transmutation. Ann. Nucl. Energy. 2020. 148:107751.
27. Zou C., Yu C., Wu J., Cai X., Chen J. Parametric study on minor actinides transmutation in a graphite-moderated thorium-based molten salt reactors. Int. J. Energy Res. 2020.:1–11.
28. Serp J., Allibert M., Beneš O., Delpech S., Feynberg O., Ghetta V., et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog. Nucl. Energy. 2014. 77:308–19.
29. LeBlanc D. Molten salt reactors: A new beginning for an old idea. Nucl. Eng. Des. 2010. 240(6):1644–56.
30. Ignatiev V., Feynberg O., Gnidoi I., Merzlyakov A., Surenkov A., Uglov V., et al. Molten salt actinide recycler and transforming system without and with Th-U support: Fuel cycle flexibility and key material properties. Ann. Nucl. Energy. 2014. 64:408–20.
31. Robertson R.C. Conceptual Design Study of a Single-Fluid Molten-Salt Breeder Reactor. 1971.
32. Li G.C., Cong P., Yu C.G., Zou Y., Sun J.Y., Chen J.G., et al. Optimization of Th-U fuel breeding based on a single-fluid double-zone thorium molten salt reactor. Prog. Nucl. Energy. 2018. 108:144–51.
33. Rykhlevskii A., Bae J.W., Huff K.D. Modeling and simulation of online reprocessing in the thorium-fueled molten salt breeder reactor. Ann. Nucl. Energy. 2019. 128:366–79.
34. Waris A., Aji I.K., Pramuditya S., Novitrian, Permana S., Su’ud Z. Comparative Studies on Plutonium and Minor Actinides Utilization in Small Molten Salt Reactors with Various Powers and Core Sizes. Energy Procedia. 2015. 71:62–8.
35. Park J., Jeong Y., Lee H.C., Lee D. Whole core analysis of molten salt breeder reactor with online fuel reprocessing. Int. J. Energy Res. 2015. 39:1673–80.
36. Silva C.A.M. da, Vieira A.L., Magalhães I.R., Pereira C. Neutronic Evaluation of MSBR System Using MCNP Code. Brazilian J. Radiat. Sci. 2021. 9(2B):1–14.
37. Carter J.P., Borrelli R.A. Integral molten salt reactor neutron physics study using Monte Carlo N-particle code. Nucl. Eng. Des. 2020. 365:110718.
38. Jaradat S.Q., Alajo A.B. Studies on the liquid fluoride thorium reactor: Comparative neutronics analysis of MCNP6 code with SRAC95 reactor analysis code based on FUJI-U3-(0). Nucl. Eng. Des. 2017. 314:251–5.
39. Khakim A., Rhoma F., Waluyo A., Suharyana S. The neutronic characteristics of thermal molten salt reactor. in: AIP Conference Proceedings. 2021. p. 020028.
40. Khakim A., Firmanda F.R., Pramono Y., Suharyana Assessment of TMSR-500 Shutdown Capability. Atom Indones. 2022. 48(1):1–7.
41. Dwijayanto R.A.P., Oktavian M.R., Putra M.Y.A., Harto A.W. Model Comparison of Passive Compact-Molten Salt Reactor Neutronic Design Using MCNP6 and Serpent-2. Atom Indones. 2021. 47(3):191–7.
42. Zou C.Y., Cai X.Z., Jiang D.Z., Yu C.G., Li X.X., Ma Y.W., et al. Optimization of temperature coefficient and breeding ratio for a graphite-moderated molten salt reactor. Nucl. Eng. Des. 2015. 281:114–20.
Refbacks
- There are currently no refbacks.