REVIEW: APPLICATION OF IRRADIATION TECHNOLOGY IN NATURAL RUBBER VULCANIZATION PROCESS

Andri Saputra, S.ST., M.Eng.

DOI: http://dx.doi.org/10.17146/jfn.2020.14.3.6253

Sari


APPLICATION OF IRRADIATION TECHNOLOGY IN NATURAL RUBBER VULCANIZATION PROCESS. A new vulcanization technology is needed in order to eliminate some potential negative impacts of conventional vulcanization such as contain nitrosamines and allergen proteins that are harmful to health, toxic residues of accelerator compound, cannot be done at room temperature, and sulfur crosslinking contribute to acidification impact. One of the advanced technologies that can be used in the processing of polymers, such as natural rubber, is irradiation using gamma rays. This study is descriptive analysis by conducting a literature search from books and journals of national and international reputation. Radiation in latex of natural rubber will cause free radical formation, crosslinking, and chain scission between polyisoprene chains, and also produce mostly H2 gas. For crosslinking, materials with G(S):G(X) ratios <1.00 are preferred. The dose increase till certain dose led to an increase in the cross-link density of the irradiated rubbers, while apparently, the degradation mechanism has occurred for doses greater than optimum doses. The tensile strength at break of radiation vulcanizate has long been presumed to be lower than that of sulfur vulcanizate or peroxide vulcanizate. The approaches for enhancing radiation crosslinking could be defined by incorporation with filler, increasing the possibility of polymer radical recombination, and increasing the amount of polymer radicals.

Teks Lengkap:

PDF (English)

Referensi


  1. R. A. Putranto. (5 January 2021). Menguak rahasia penyakit kering alur sadap (KAS) pada tanaman karet menggunakan teknik analisis ekspresi gen debit tinggi. Available: https://www.iribb.org/images/stories/artikel/IBRIEC_01010406_RAP_final.pdf
  2. A. B. Parhusip, “Potret karet alam indonesia,” Economic Review, vol. 213, pp. 2-3, 2008.
  3. M. Chafid, Outlook Karet 2020: Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal-Kementerian Pertanian Indonesia, 2020.
  4. W. Andriyanti, Darsono, and W. Faisal, “Kajian Metode Vulkanisasi Lateks Karet Alam Bebas Nitrosamin dan Protein Alergen,” in Prosiding PPI-PDIPTN 2010 Pustek Akselerator dan Proses Bahan-BATAN, 2010, pp. 161-169.
  5. Balittri. (11 January 2021). Keunggulan Karet Alam Dibandingkan Karet Sintetis. Available: http://perkebunan.litbang.perta nian.go.id/keunggulan-karet-alam-dibandin g-karet-sintetis/
  6. A. Ciesielski, An Introduction To Rubber Technology: Rapra Technology Limited, 1999.
  7. W. Hofmann, Rubber Technology Handbook: Hanser Publishers, 1989.
  8. M. Utama, Teknologi Lateks Alam Radiasi: Solusi Problema Produksi Barang Karet; Pusat Pengembangan Informatika Nuklir-Badan Tenaga Nuklir Nasional, 2007.
  9. International Atomic Energy Agency (IAEA), Gamma Irradiator for Radiation Processing (Brochure): IAEA, 2000.
  10. International Atomic Energy Agency (IAEA), Directory of Gamma Processing Facilities in Member Stats. IAEA- DGPF/CD: IAEA, 2004.
  11. G. G. A. Bõhm and J. O Tveekrem, “The radiation chemistry of elastomers and its industrial applications,” Rubber Chemistry and Technology, vol. 55, pp. 575-668, 1982.
  12. M. R. Abadchi and A. Jalali-Arani, “The use of gamma irradiation in preparation of polybutadiene rubber nanopowder; Its effect on particle size, morphology and crosslink structure of the powder,” Nucl. Instrum. Methods Phys. Res. B, vol. 320, pp. 1-5, 2014.
  13. R. Giri, K. Naskar, and G. B. Nando, “Effect of electron beam irradiation on dynamic mechanical, thermal and morphological properties of LLDPE and PDMS rubber blends,” Radiat. Phys. Chem., vol. 81, pp. 1930-1942, 2012.
  14. M. N. Mali, A. A. Arakh, K. A. Dubey, and S. T. Mhaske, “Influence of triallyl cyanurate as coagent on gamma irradiation cured high density polyethylene/reclaimed tire rubber blend,” Radiat. Phys. Chem., vol 131, pp. 66-72, 2017.
  15. B. Tian, W. Dong, and Y. Liu, “Grafting poly(vinyl alcohol) onto polybutadiene rubber latex particles by pre-irradiation,” Radiat. Phys. Chem., vol. 135, pp. 81-87, 2017.
  16. E. H. Farmer, “Certain fundamental concepts relating to non-polar mechanisms in oleflnic systems,” Journal of the Society of Chemical Industry, vol. 66, no. 3, pp. 86-93, 1947
  17. J. E. Mark, B. Erman, and C. M. Roland, The Science and Technology of Rubber Fourth Edition: Academic Press, 2013.
  18. Z.N. Tarasova, M.S. Fogel'son, V.T. Kozlov, A.I. Kashlinskii, M.Ya. Kaplunov and B.A. Dogadkin, “ESR study of the radiation vulcanization of rubber in the presence of sulphur and hexachloroethane,” Vysokomol. Soedin., vol. 4, no. 8, pp. 1204-1209, 1962.
  19. S. M. Miller, M. W. Spindler, and R. L. Vale, “Use of dimaleimides as accelerators for the radiation‐induced vulcanization of hydrocarbon polymers. Part II. Synthetic rubbers and saturated polymers,” Journal of Polymer Science Part A: General Papers, vol. 1, no. 8, pp. 2537-2549, 1963.
  20. Petrov, Ya., Karpov, V.L., and Sovesk, T.V., 1958, po Red. Khim. Acad. of Sci. of USSR 279.
  21. D. T. Turner, “Radiation crosslinking of rubber: Yields of hydrogen and crosslinks,” Polymer, vol. 1, pp. 27-40, 1960.
  22. H. Ambroz, “Some aspects of γ‐radiolysis of polyisoprene in the form of natural rubber latex,” Journal of Polymer Science: Polymer Symposia, vol. 42, no. 3, pp. 1339-1345, 2007.
  23. S. R. Scagliusi, E. C. L. Cardoso, C. A. Pozenato, and A. B. Lagão, “Degrading radiation effects on properties of bromobutyl rubber compounds,” in 2013 International Nuclear Atlantic Conference - INAC 2013, 2013, pp. 1-8.
  24. Y. Tabata, Y. Ito, and S. Tagawa, CRC Handbook of Radiation Chemistry: CRC Press, 1991.
  25. J. Mark, Physical Properties of Polymers Handbook: AIP Press, 1996.
  26. K. Makuuchi and S. Cheng, Radiation Processing of Polymer Materials and Its Industrial Applications: John Wiley & Sons, Inc., 2012.
  27. C. Zhonghai and K. Makuuchi K, “n-Butyl acrylate as a sensitizer for radiation vulcanization of natural rubber latex,” in Proc. Int. Syrup. Radiat. Vulcanization of Natural Latex, 1989, pp. 89-228
  28. Y. S. Soebianto and F. Sundardi, “Effect of hydrogen peroxide on radiation vulcanization of natural rubber latex sensitized with carbon tetrachloride and n-butyl acrylate,” in Proc. Int. Syrup. Radiat. Vulcanization of Natural Rubber Latex, 1989, pp. 89-228
  29. M. E. Haque, N. C. Dafader, F. Akhtar, and M. U. Ahmad, “Radiation dose required for the vulcanization of natural rubber latex,” Radiant. Phys. Chem., vol. 48, no. 4, pp. 505-510, 1996.
  30. R. Taewattana, C. Jubsilp, P. Suwanmala, and S. Rimdusit, “Effect of gamma irradiation on properties of ultrafine rubbers as toughening filler in polybenzoxazine,” Radiation Physics and Chemistry, vol. 145, pp. 184-192, 2018.
  31. A. B. Moustafa, R. Mounir, A. A. El Miligy, and M.A. Mohamed, “Effect of gamma irradiation on the properties of natural rubber/styrene butadiene rubber blends,” Arabian Journal of Chemistry, vol. 9, no. 1, pp. 124-129, 2016.
  32. D. J. Harmon, “Radiation vulcanization of elastomers,” Rubber Age, vol. 86, pp. 251-261, 1959.
  33. H. E. Adams and B. L. Johnson, “Cross Linking in Natural Rubber Vulcanizates,” Ind. Eng. Chem., vol. 45, no 7, pp. 1539-1546, 1953.
  34. S. Ahmed, A. A. Basfar, M. M. Abdel Aziz, “Comparison of thermal stability of sulfur, peroxide and radiation cured NBR and SBR vulcanizates,” Polym. Degrad. Stabil., vol 67, pp. 319-323, 2000.
  35. A. A. Basfar, M. M. Abdel-Aziz, S. Mofti, “Influence of different curing systems on the physico-mechanical properties and stability of SBR and NR rubbers,” Radiat. Phys. Chem., vol. 63, pp. 81-87, 2002.
  36. J. H. A. Grobler and W. J. McGill, “Effect of network heterogeneity on tensile and tear strengths of radiation, peroxide, efficient and conventional cured polyisoprene,” Journal of Polymer Science: Part B: Polymer Physics, vol. 32, pp. 287-295, 1994.
  37. J. Lal, “Effect of crosslink structure on properties of natural rubber,” Rubber Chemistry and Technology, vol. 43, pp. 664-686, 1970.
  38. A. V. Tobolsky and P. F. Lyons, “Tensile strength of rubbers,” Journal of Polymer Science: Part A2: Polymer Physics, vol. 6, pp. 1561-1566, 1968.
  39. Y. Ikeda, Y. Yasuda, K. Hijikata, M. Tosaka, and S. Kohjiya, “Comparative study on strain-induced crystallization behavior of peroxide crosslinked and sulfur crosslinked natural rubber,” Macromolecules, vol. 41, pp. 5876-5884, 2008.
  40. D. P. Patterson and J. L. Koenig, “Solid-state C NMR characterization of irradiation crosslinked natural rubber,” Applied Spectroscopy, vol. 41, pp. 441-446, 1987.
  41. G. G. A. Bohm, M. Detrano, D. S. Pearson, D. R. Carter, “A comparison of the physical properties of radiation and sulfur-cured poly(butadiene-co-styrene),” Journal of Applied Polymer Science, vol. 21, pp. 3193-3209, 1977


Refbacks

  • Saat ini tidak ada refbacks.