BIOETHANOL PRODUCTION FROM COCONUT HUSK USING THE WET GAMMA IRADIATION METHOD

Putra Oktavianto, Risdiyana Setiawan, Ilhami Ariyanti, Muhammad Fadhil Jamil

DOI: http://dx.doi.org/10.17146/jfn.2020.14.2.5908

Sari


BIOETHANOL PRODUCTION FROM COCONUT HUSK USING the WET GAMMA IRRADIATION METHOD. The use of coconut husk has only been used as a material for making handicrafts such as ropes, brooms, mats, and others or just burned. The combustion of coconut husk can cause air pollution. In fact, coconut husk can be used as a raw material for bioethanol production so that the beneficial value of coconut husk will also increase. One way of bioethanol production from coconut husk is by irradiating the coconut husk. The coconut husk irradiation technique to be carried out in this study is the wet irradiation technique. Wet irradiation is carried out to accelerate the process of bioethanol production because at the time of irradiation, cellulose has been hydrolyzed and glucose has been formed so that it is more efficient in time and use of the material so that the cellulose hydrolysis process is not necessary. The coconut husk samples were wet because they were mixed with 4% NaOH and were irradiated using a gamma irradiator from STTN-BATAN Yogyakarta with a dose of 30 kGy and 50 kGy and 0 kGy (or without irradiation). Then the sample is fermented with the fungus Saccharomyces Cerevisiae from tape yeast to form ethanol. Ethanol is purified and then analyzed for concentrations using pycnometric and refractometric methods. The result is that the highest ethanol content is without irradiation (0 kGy), this is due to the low dosage used. However, the main point in this wet method research is evidence of hydrolysis of cellulose by the formation of gluoxane after irradiated wet coconut husk, and with Fehling A and B analysis, brown deposits are seen proving that glucose has been formed.

Teks Lengkap:

PDF (English)

Referensi


  1. Chandel, A.K., E.S. Chan., R. Rudravaram, M.L., Narasu, L.V., Rao., and P. Ravindra, “Economics and Environmental Impact of Bioethanol Production Technologies”, Biotechnology and Molecular Biology, Vol. 2, No. 1, pp. 14-32. 2007.
  2. Rachmaniah, O., Febriyanti, L.S., and Lazuardi, K, “Pengaruh Liquid Hot Water Terhadap Perubahan Struktur Sel Bagas”, Prosiding Seminar Nasional XIV-FTI-ITS ,2009. Institut Teknologi Sepuluh November, Surabaya, pp. 31-40.
  3. Costa, Guy and Plazanet, Idelette, “Plant Cell Wall , A Challenge For Its Characterisation. ”Biological Chemistry, Vol. 6, pp. 70-105. 2016.
  4. Mahmud, Zainal and Ferry, Yulius, “Prospek Pengolahan Hasil Samping Buah Kelapa Pusat Praktikum dan Pengembangan Perkebunan.” Indonesian Center for Estate Crops and Development, Vol. 4, No. 2, pp. 55-63. 2004.
  5. Anggorowati. D.A and Dewi. B. K, “Pembuatan Bioetanol dari Limbah Sabut Kelapa dengan Metode Hidrolisis Asam dan Fermentasi dengan Menggunakan Ragi Tape”, Industri Inovatif, Vol. 3, No. 2, September, pp. 9-13. 2013.
  6. Fajar, A.A. “Biokonversi Lignoselulosa Limbah Sabut Kelapa Menjadi Bioetanol Menggunakan Trichoderma Reesei, Zimomonas Mobilis dan Pichia Stipitis”. Departemen Biokimia Fakultas Matematika dan Ilmu Pengetahuan Alam. IPB. 2014.
  7. Joeh, Tina, Steam Exploson of Cotton Gin Waste for Fuel Ethanol Production, Jurnal Kimia. 1998.
  8. Hermiati, E., Mangunwidjaja, D., Sunarti, T. C., Suparno, O., and Prasetya, B. "Pemanfaatan Biomassa Lignoselulosa Ampas Tebu Untuk Produksi Bioetanol". Litbang Pertanian, Vol. 29, No. 4, pp. 121-130. 2010.
  9. Shin, S.J., Han, S.H., Park, J.M., and Cho, N.S, “Monosaccharides from Industrial Hemp (Cannabis Sativa L.) Woody Core Pretreatment with Ammonium Hydroxide Soaking Treatment Followed by Enzymatic Saccharification. ”Journal of Korea TAPPI, Vol. 41, No. 5, pp. 16-19. 2009.
  10. Xuan, D., Mai, V.Q., Duy, N.N., Phu, D.V., and Hien, N.Q, “Degradation of Chitosan By Y-Irradiation of Chitosan Swollen in Hydrogen Peroxide Solution.” Vietnam Journal of Science And Technology, Vol. 52, No. 4, pp. 441-50. 2014.
  11. Charlesby, A., “The Degradation of Cellulose by Ionizing Radiation”, Journal Of Polymer Science, Vol. 15, pp. 263-270. 1995.
  12. Sugiarto, Yusron., Mahfut, L.N., Rilek, N.W., Atrinto, A.C.P., and Khotimah, M, “Pengaruh Frekuensi Ultrasonik dan Konsentrasi Pada Proses Pretreatment Bioetanol Pelepah Sawit.” Jurnal Teknologi Pertanian, Vol. 15, No. 3, pp. 213-22. 2014.
  13. Darojati. H. A, Putra. S, and Zulprasetya. F. P, “Pengaruh Iradiasi Gamma pada Konversi Biomassa Lignoselulosa Sabut Kelapa Menjadi Bioetanol” Jurnal Teknik Kimia dan Lingkungan, Vol. 3, No. 2. 2019.
  14. Puligundla, P., Smogrovicova, D., Obulam, V. S. R., and Ko, S. Very high gravity (VHG) ethanolic brewing and fermentation, Journal of Industrial Microbiology, Vol. 38, pp. 1133-1144, 2011.
  15. Asip, F., Wibowo. Y.P., and Wahyudi. R.T, “Konsentrasi HCl Pada Hidrolisa Sabut Kelapa Untuk Memproduksi Bioetanol” Jurnal Teknik Kimia, Vol. 22, No. 1, pp. 10-20. 2019.
  16. Sun, Y and Cheng, J, “Hydrolysis of Lignocellulosic Materials for Ethanol Production.” Bioresource Technology, Vol. 83, pp. 1-11. 2002.
  17. Anggorowati, D.A., and Dewi, B.K., “Pembuatan Bioetanol Dari Limbah Sabut Kelapa Dengan Metode Hidrolisis Asam dan Fermentasi Dengan Menggunakan Ragi Tape” Industri Inovatif, Vol. 3, No. 2, pp. 9-13, 2013.


Refbacks

  • Saat ini tidak ada refbacks.


slot dana