Epung Saepul Bahrum, Wawan Handiaga, Yudi Setiadi, Henky Wibowo, Prasetyo Basuki, Alan Maulana, Mohamad Basit Febrian, Jupiter Sitorus Pane



One of the results from Plate Type Research Reactor Bandung (PTRRB) research program is PTRRB core design. Previous study on PTRRB has not calculated neutron flux distribution at its central irradiation position (CIP). Distribution of neutron flux at CIP is of high importance especially in radioisotope production. In this study, CIP was modeled as a stack of four to five aluminum tubes (AT), each filled by four aluminum irradiation capsules (AIC). Considering AIC dimension and geometry, there are three possibilities of AT configuration. For irradiation sample, 1.45 gr of molybdenum (Mo) was put into AIC. Neutron flux distribution at Mo sample was calculated using TRIGA MCNP and MCNP software. The calculation was simulated at condition when fresh fuel is loaded into reactor core. Analyses of excess reactivity show that, after installing irradiation AT and Mo sample was put into each configuration, the excess reactivity is less than 10.9 %. The highest calculated thermal neutron flux at Mo sample is 5.08×1013 n/cm2.s at configuration 1. Meanwhile, the highest total neutron flux at Mo sample is located at capsule no. II and III. Thermal neutron flux profile is the same for all configurations. This result will be used as a basic data for PTRRB utilization.

Keywords: Central Irradiation Position, Neutron Flux Distribution, MCNP, PTRRB

Full Text:



  1. Basuki P. Neutronics Design Of Bandung-Triga 2000 Core Converted To Plate Type Fuel Element. Magister Thesis. Department Physics. ITB. 2013 (in Indonesia)
  2. Basuki P. Neutronic Design Of Plate Type Fuel Conversion For Bandung TRIGA-2000 Reactor. Jurnal Sains Dan Teknologi Nuklir Indonesia. 2014. 15(2):169-180. (in Indonesia)
  3. Cohen I.M., Robles A., Mendoza P., Airas R.M, Montoya E.H. Experimental evidences of 95 mTc production in a nuclear reactor. Applied Radiation and Isotopes. 2018. 135: 207-211.
  4. Zhuikov B.L. Production of medical radionuclides in Russia: Status and future—a review. Applied Radiation and Isotopes. 2014.84:48-56.
  5. Lee S.K., Beyer G.J., Lee J.S. Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target. Nuclear Engineering and Technology. 2016.48:613-623.
  6. Nuttall W.J., Storey P. Technology and policy issues relating to future developments in research and radioisotope production reactors. Progress in Nuclear Energy. 2014. 77: 201-213.
  7. Liem P.H., Tran H.N., Sembiring T.M. Design optimization of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production. Progress in Nuclear Energy. 2015.82:191-196.
  8. Aziz A., Suherman N.. Karakterisasi Fisiko-Kimia RadioIsotop 149PM hasil iradiasi bahan sasaran 148Nd Alam. Jurnal Sains dan Teknologi Nuklir Indonesia. 2015. 16:29-42.
  9. Aziz A., Nuryadin R.. Optimasi Pemisahan Radioisotop 161TB Hasil Iradiasi Bahan Sasaran Gadolium Oksida Diperkaya Isotop 160GD Menggunakan Metoda Kromatografi Ekstraksi. Jurnal Sains dan Teknologi Nuklir Indonesia. 2016. 17:83-96.
  10. Setiawan D., Aziz A., Febrian M.B. , Setiadi Y., Hastiawan I.. Pengembangan Teknologi Proses Radioisotop Medis 131I Menggunakan Metode Kolom Resin Penukar Ion Untuk Aplikasi Kedokteran Nuklir. Jurnal Sains dan Teknologi Nuklir Indonesia. 2018.18:15-24.
  11. Aziz A.. Peningkatan Efisiensi Pemisahan Radioisotop Terbium-161 Berbasis Kromatografi Kolom Untuk Aplikasi Terapi Kanker. Jurnal Sains dan Teknologi Nuklir Indonesia. 2017. 18:95-108.
  12. Alfathia D.A, Hastiawan I., Setiawan D.. Pembuatan Radioiodida-131(131I) Bebas Pengemban Berdasarkan Kolom Resin Amberlit. Jurnal Sains dan Teknologi Nuklir Indonesia. 2017.18:95-108.
  13. Carter L.L, Schwarz R.A, MCNP Visual Editor Computer Code Manual. 2002.
  14. Goorley T., James M., Both T., Brown F., Bull J., Cox L.J., Durkee J., Elson J., Fensin M., Forster R.A., Hendricks J., Hughes H.G., Johns R., Kiedrowski B., Martz R,, Mashnik S., McKinney G., Pelowitz D., Prael R., Sweezy J., Waters L., Wilcox T., Zukaitis T.. Initial MCNP 6 Release Overview. Nuclear Technology. 2012, 180:298-315.
  15. PSTNT. Basic Design of Plate Type Research Reactor Bandung. 2017.
  16. Dibyo S. , Sudjatmi K.S , Sihana, Irianto D.. Simulation of Modified TRIGA-2000 with Plate Type Fuel Under LOFA Using EUREKA2/RR-Code. Atom Indonesia. 2018. 44(1):31-36.
  17. Ramadhan A.I, Suwono A., Umar E., Tandian N.P., Preliminary Study for Design Core of Nuclear Research Reactor of TRIGA Bandung Using Fuel Element Plate MTR. Engineering Journal. 2017.21(3): 173-181.
  18. Rahardjo R.H.P., Wardhani V.I.S.. Effects of Cooling Fluid Flow Rate on the Critical Heat Flux and Flow Stability in the Plate Fuel Type 2 MW TRIGA Reactor. Atom Indonesia. 2017. 43(3):149-155.


  • There are currently no refbacks.

PTKRN Digital Library Ristek Mendeley