ANALISIS METALOGRAFI PELAT ELEMEN BAKAR U₃Si₂/AI PASCA IRADIASI DENSITAS 2,96 gU/cm³

Maman Kartaman Ajiriyanto, Aslina Br.Ginting, Junaedi Pusat Teknologi Bahan Bakar Nuklir – BATAN Kawasan Puspiptek Serpong Gd.20, Tangerang Selatan, Banten 15314 e-mail:makar@batan.go.id (Naskah diterima: 20–12–207, Naskah direvisi: 30–01–2018, Naskah disetujui: 01–02–2018)

ABSTRAK

ANALISIS METALOGRAFI PELAT ELEMEN BAKAR U₃Si₂/AI DENSITAS 2,96 gU/cm³ PASCA IRADIASI. Telah dilakukan analisis metalografi pelat elemen bakar (PEB) U₃Si₂/Al pasca iradiasi di dalam hotcell. Tujuan analisis metalografi untuk mengetahui perubahan mikrostruktur PEB U₃Si₂/AI dan ketebalan kelongsong AIMg2 setelah mengalami iradiasi didalam reaktor hingga burnup 56%. PEB U₃Si₂/Al pasca iradiasi dipotong pada posisi top, middle dan bottom dengan ukuran masing-masing sekitar 5x5x1,37 mm. Preparasi metalografi dimulai dari pemotongan PEB menggunakan cutting machine dengan low speed, mounting, grinding dan polishing didalam hotcell 104-105. Proses mounting dilakukan menggunakan resin dengan waktu >10 jam, proses grinding menggunakan kertas ampas hingga ukuran grit 2400 dan proses polishing dilakukan menggunakan pasta intan dari ukuran 3 sampai 1 mikron dengan kecepatan putar 150 rpm selama 5 menit. Pengamatan mikrostruktur menggunakan mikroskop optik di hotcell 107 dengan perbesaran 200 kali. Hasil analisis mikrostruktur diperoleh partikel U₃Si₂ dengan bentuk dan ukuran beragam, matriks AI dan kelongsong AIMg2 yang tersebar sepanjang PEB U₃Si₂/AI. Pengamatan mikrostruktur PEB U₃Si₂/AI pasca iradiasi belum menunjukkan hasil yang baik karena hanya dapat mengamati topografi meat U₃Si₂/AI, matriks AI dan kelongsong AIMg2. Hal ini disebabkan karena pengamatan mikrostruktur dengan menggunakan mikroskop optik di dalam hotcell maksimal hanya dengan perbesaran 200 kali sehingga fenomena interaction layer dan small gas bubble tidak dapat diamati. Namun mikrostruktur PEB U₃Si₂/Al dengan burn up 56% dibandingkan dengan mikrostruktur bahan bakar U₃Si₂/Al pasca iradiasi dengan burn up 60% yang merupakan hasil peneliti sebelumnya, hasilnya menunjukkan adanya interaksi antara meat U₃Si₂ dengan matriks AI dan adanya lapisan atau layer dengan ketebalan sekitar 5 hingga 20 mikron. Sementara itu, ketebalan kelongsong AlMg2 diperoleh lebih besar dari 0,25 mm, hal ini menunjukkan bahwa pengaruh iradiasi tidak memberikan perubahan ketebalan kelongsong AIMg2 secara signifikan sehingga secara keseluruhan PEB U₃Si₂-AI pasca iradiasi masih memiliki integritas dan kestabilan cukup baik.

Kata kunci : PEB U₃Si₂/AI, pasca iradiasi, mikrostruktur, ketebalan kelongsong.

ABSTRACT

METALOGRAPHIC ANALYSIS OF IRRADIATED U3Si2/AI FUEL ELEMENT PLATE OF 2,96 gU/cm³ DENSITY. Metallographic analysis of U₃Si₂/AI fuel element plate has been performed in hotcell. The purpose of metallographic analysis is to study changes in PEB U₃Si₂/AI microstructure and AIMg₂ cladding thickness after irradiation in reactor until burn up of 56%. The fuel element plate of irradiated U₃Si₂/AI was cut in top, middle and bottom positions with each size around 5x5x1,37mm. Metallographic preparation starts from sample cutting using cutting machine with low speed and sample mounting, grinding and polishing in hotcell 104-105. Sample mounting was done by using resin for more than 10 hours followed by grinding with sand papers up to grit size of 2400 and polishing with diamond paste of size 3 to 1 micron at a rotational speed of 150 rpm for 5 minutes. Microstructure observation was performed with optical microscope in hotcell 107 at 200 times magnification. Microstructure examination reveals U3Si2 particles with diverse forms and sizes, AI matrix and AIMg₂ cladding were spread alongthe U₃Si₂/AI side. Microstructure observation of irradiated U₃Si₂/AI has not shown good result because only topography observation of U_3Si_2/AI meat, AI matrix and AIMg₂ cladding can be done due to limited capability of the optical microscope in hotcell, where maximum magnification can be attained only at 200 times so that the phenomenon of interaction layer and small gas bubble can not be observed. However, U₃Si₂/AI microstructure of 56% burnup, if compared to the microstructure of U_3Si_2/Al fuel element plate of 60% burnup from previous researcher, shows interaction between U_3Si_2 meat with AI matrix and the existence of layers with a thickness about 5 up to 20 microns. Meanwhile, the observed thickness of AIMg₂ cladding is greater than 0.25 mm, which indicates that irradiation does not significantly change the thickness of AIMg₂ cladding so that the overall irradiated U₃Si₂-AI still has good integrity and stability.

Keywords: PEB U₃Si₂/Al, post irradiation, microstructure, cladding thickness.

PENDAHULUAN

Bahan bakar U₃Si₂/Al densitas 2,96 gU/cm³ pasca iradiasi yang telah mengalami pendinginan di fuel storage dikirim ke IRM (Instalasi Radiometalurgi) untuk dilakukan uji PIE (Post Irradiation Examination) atau Uji Pasca Iradiasi di dalam hotcell. Uji pasca iradiasi bertujuan untuk mengetahui karakter bahan bakar setelah diiradiasi direaktor dengan burn up 56%[1]. Bahan bakar pasca iradiasi mengalami penurunan unjuk kerja yang disebabkan oleh reaksi fisi 235U dengan neutron termal dan menghasilkan beberapa hasil fisi (hasil belah) maupun unsur-unsur bermassa berat seperti U, Pu, Nd, Cs, Eu, Sr, Ce, Zr, Kr dan Xe[2]. Besarnya isotop hasil fisi dan unsur-unsur bermassa berat berpengaruh kepada perubahan sifat kimia, mikrostruktur, sifat mekanik dan perubahan sifat lainnya, sehingga menyebabkan penurunan unjuk kerja bahan bakar U₃Si₂/AI.

Penurunan unjuk kerja bahan bakar pasca iradiasi dapat diketahui dengan tidak merusak melakukan uji (non destructive test, NDT) dan uji merusak (destructive test, DT). Uji tidak merusak meliputi pengamatan cacat secara visual terhadap bahan bakar pasca iradiasi, pengukuran ketebalan atau dimensi pelat elemen bakar (PEB) untuk mengetahui swelling dan pengukuran distribusi gamma di dalam PEB. Sementara itu, uji merusak meliputi analisis metalografi untuk mengamati perubahan mikrostruktur dan fisikokima analisis untuk mengetahui kandungan hasil fisi dan unsur bermassa berat di dalam PEB[1].

Pada penelitian sebelumnya telah dilakukan analisis fisikokimia bahan bakar PEB U₃Si₂/AI densitas 2,96 gU/cm³ pasca iradiasi pada potongan bagian *top, middle* dan *bottom.* Hasil analisis fisikokimia telah diperoleh kandungan isotop ²³⁵U dalam PEB U₃Si₂/AI yang disebabkan oleh reaksi fisi[3,4]. Data isotop ²³⁵U sisa digunakan untuk perhitungan *burn up* bahan bakar U₃Si₂/Al. Besar burn up maksimal untuk bahan bakar U₃Si₂/AI saat diiradiasi dalam teras reaktor yang diizinkan hingga burnup 56%. Untuk melengkapi data PIE atau uji pasca iradiasi PEB U₃Si₂/AI densitas 2,96 gU/cm³ maka dilakukan penelitian lanjutan yaitu analisis metalografi. Data metalografi PEB U₃Si₂/Al bertujuan untuk mengetahui pengaruh radiasi terhadap mikrostruktur bahan bakarU₃Si₂/AI selama diiradiasi di dalam reaktor. Mikrostruktur yang diamati adalah ukuran partikel U₃Si₂ dan distribusinya, ketebalan kelongsong AIMg2, layer akibat interaksi dispersan U₃Si₂ dengan matriks Al dan porositas akibat iradiasi. Data PIE digunakan sebagai umpan balik kepada reaktor dan fabrikator untuk mengevaluasi unjuk kerja bahan bakar U₃Si₂/Al.

Peneliti bahan bakar nuklir telah banyak melakukan analisis mikrostruktur terhadap bahan bakar U₃Si₂/Al pasca iradiasi. Peneliti A.Leenaers,dkk melakukan analisis metalografi PEB U₃Si₂/AI densitas 4,8 gU/cm³ dengan kelongsong AlFeNi pasca iradiasi dan memperoleh hasil mikrostruktur berupa small gas bubble pada meat U₃Si₂/Al, interaction layer pada dispersan U₃Si₂ dan matriks AI serta perubahan kekerasan mikro pada meat U₃Si₂/Al[5]. Peneliti lain juga menyatakan bahwa mikrostruktur bahan bakar U₃Si₂/AI pasca iradiasi adalah gas bubble hasil fisi yang terdistribusi merata pada dispersan U₃Si₂. Berdasarkan analisis pola difraksi juga menghasilkan struktur U3Si2 menjadi amorf[6]. Perubahan mikrostruktur pada bahan bakar U₃Si₂/AI disebabkan beberapa faktor antara lain adalah pengaruh iradiasi dan porositas meat bahan bakar. Pengaruh iradiasi menyebabkan terjadinya interaksi kelongsong AIMg2 dengan meat U₃Si₂/AI dan interaksi antara meat bahan bakar U₃Si₂ dengan matriks Al[7]. Selain itu, selama berada di dalam reaktor, bahan bakar akan mengalami beberapa pembebanan diantaranya adalah fluks neutron sebesar 2x10¹⁴ neutron/cm²detik dan temperatur yang diterima bahan bakar rata-rata sebesar 120 °C. Sementara itu, temperatur yang diterima pada bagian meat U₃Si₂/Al dan antarmuka meat dengan kelongsong AIMg2 lebih dari 200 °C[8]. Faktor kedua yang mempengaruhi perubahan mikrostruktur adalah persentase porositas meat U₃Si₂/AI di dalam volume bahan bakar. Porositas meat vang dihasilkan fabrikator bahan bakar bervariasi antara satu dengan lainnya, misalnya untuk ANL 3-15%volume bahan bakar, 4%volume untuk CERCA, 7-8%volume untuk NUKEM, 9-10%volume untuk B&W serta 4-8%volume untuk PT. INUKI[9]. Peningkatan porositas di dalam meat U₃Si₂/Al diduga akan mempengaruhi mikrostruktur PEB U₃Si₂/Al. Faktor ketiga yang mempengaruhi perubahan mikrostruktur bahan bakar adalah terjadinya interaksi U₃Si₂/Al dengan kelongsong AlMg2 akibat proses perolan PEB U₃Si₂/Al pada saat fabrikasi.

Pada penelitian sebelumnya telah diperoleh hasil bahwa PEB U₃Si₂/Al pra iradiasi setelah mengalami pemanasan hingga temperatur 500 °C tidak ada perubahan mikrostruktur pada meat, namun terjadi perubahan ukuran butir pada bagian kelogsong AlMg2[10]. Hasil penelitian lainnya menyatakan bahwa bahan bakar U₃Si₂/AI yang telah diiradiasi hingga burn-up 60% menyebabkan terjadinya interaksi antara partikel bahan bakar U₃Si₂ dengan matriks Al. Pengamatan adanya interaction layer dan small bubble pada dispersan U₃Si₂ yang dianalisis dengan elektron sekunder pada Scanning Electron Microscope (SEM). Hasil pengamatan mikrostruktur dengan SEM menunjukkan adanya *interaction layer* dan juga gas *bubble* pada antarmuka di sekeliling dispersan U₃Si₂[11].

Pada penelitian lanjutan ini dilakukan analisis mikrostruktur PEB U₃Si₂/AI densitas 2,96 gU/cm³ pasca iradiasi dengan burnup 56%. Sampel PEB dipotong pada bagian top, middle dan bottom sehingga dapat mewakili sifat secara keseluruhan. Pengamatan mikrostruktur yang dianalisis meliputi morfologi dispersan U₃Si₂, interaksi antara U₃Si₂ dengan matriks AI, ketebalan kelongsong AIMg2, porositas atau gas bubble akibat iradiasi terutama pada bagian meat U₃Si₂/Al, pembentukan fasa kedua atau intermetalik pada interface partikel U3Si2 dengan matriks Al.

METODOLOGI

Bahan bakar U₃Si₂/AI densitas 2,96 gU/cm³ yang telah diiradiasi dalam reaktor G.A. Siwabessy hingga *burn up* 56% dikirim ke *hotcell* IRM untuk dilakukan uji pasca iradiasi. Bahan bakar tersebut dibongkar (*dismantling*) sehingga diperoleh PEB U₃Si₂/AI dengan nomor pelat 20 yang siap dianalisis. PEB U₃Si₂/AI dipotong menjadi tiga bagian yaitu pada posisi *top, middle* dan *bottom* dengan ukuran masingmasing sekitar 5x5x1,37 mm menggunakan alat potong *diamond cutting low speed* seperti yang ditunjukkan pada Gambar 1.

Gambar 1. Posisi pemotongan PEB U₃Si₂/Al bagian top, middle dan bottom[12]

Ketiga sampel hasil potongan tersebut di*mounting* menggunakan resin epoksi dan *hardener* dengan *curing tim*e >10 jam dan dibiarkan hingga mengeras secara alamiah selama 10 jam di dalam *hotcell.* Hasil *mounting* kemudian diamplas

dan dipoles menggunakan mesin grinding dan polishing. Proses grinding dilakukan menggunakan kertas SiC secara bertahap mulai dari ukuran grit 500, 800, 1200, 2000 dan 2400 dengan kecepatan putar 150 rpm masing-masing selama 3-5 menit[13,14]. Sampel kemudian dicuci dalam ultrasonik untuk menghilangkan pengotor vang menempel pada permukaan sampel. Proses polishing dilakukan dengan menggunakan pasta intan dari ukuran 3 sampai 1 mikron dengan kecepatan putar 150 rpm selama 5 menit. Sampel PEB U₃Si₂/Al hasil poles dicuci kembali dan dikeringkan, kemudian ditransfer ke hotcell 107 melalui konveyor untuk pengamatan mikrostruktur dengan menggunakan mikroskop optik. Keseluruhan tahapan preparasi metalografi didalam hotcell 104-105 dilakukan secara remote menggunakan bantuan tangan manipulator. Pengamatan mikrostruktur sampel PEB U₃Si₂/Al densitas 2,96 gU/cm³ pada potongan top, middle dan bottom dilakukan dengan perbesaran 50, 100 dan 200 kali di hotcell 107. Sementara itu, pengukuran ketebalan kelongsong AIMg2 dilakukan menggunakan software zenlite yang terlebih dahulu dilakukan kalibrasi menggunakan reticle dengan lensa objektif yang sama. Setelah kalibrasi dilakukan image analisis meliputi pemberian skala pada gambar dan pengukuran jarak. Pengukuran tebal kelongsong AIMg2 dilakukan dari titik terluar meat dan ditarik garis tegak lurus hingga sisi luar PEB U₃Si₂/Al[15].

HASIL DAN PEMBAHASAN

a) Analisis mikrostruktur

Hasil pengamatan mikrostruktur PEB U₃Si₂/Al pasca iradiasi dari potongan bagian *top*, secara utuh ditunjukkan pada Gambar 2.(a). PEB U₃Si₂/Al terdiri dari bagian kelongsong AIMg2 dan *meat* U₃Si₂/AI yang terdistribusi secara merata ditengah di sepanjang PEB. Pada bagian tepi terlihat adanya deformasi akibat pemotongan. Ketebalan kelongsong AIMg2 relatif merata dan dispersan U₃Si₂ tidak berdifusi kedalam kelongsong AIMg2. Hasil tersebut diperjelas dengan analisis mikrostruktur potongan PEB U₃Si₂/AI bagian *top* dengan perbesaran 100 kali seperti yang terlihat pada Gambar 2.(b), yang menunjukkan adanya perbedaan antara kelongsong AIMg2 dengan *meat* U₃Si₂/AI.

Sementara itu, analisis mikrostruktur meat U₃Si₂/Al dengan perbesaran 200 kali terlihat perbedaan yang nyata antara dispersan U₃Si₂ dan matriks Al. Partikel U₃Si₂ terdispersi secara merata dalam matriks AI seperti yang ditunjukkan pada Gambar 2.(c). Bagian yang berwarna agak gelap adalah dispersan U₃Si₂ sedangkan yang terang adalah matriks Al. Ukuran dispersan tidak homogen dan bentuk tidak beraturan. Proses pembuatan dispersan U₃Si₂ dengan cara mechanical milling menghasilkan bentuk dan ukuran yang khas seperti tersebut diatas yaitu bentuk tidak beraturan dan menyudut serta ukuran juga relatif kurang homogen. Pada sekeliling dispersan U₃Si₂ tidak terlihat adanya reaksi antar muka dispersan U₃Si₂ dengan matriks Al. Selain itu juga tidak terlihat adanya porositas atau gas bubble akibat iradiasi. Hal ini diduga karena resolusi mikroskop optik yang rendah atau juga karena gas bubble tidak terbentuk selama proses iradiasi. Mikroskop optik memiliki daya resolusi terbatas dibandingkan dengan mikroskop elektron, sehingga gas bubble dengan ukuran yang sangat halus tidak terlihat jelas apabila diamati dengan mikroskop optik.

Gambar 2. (a). Mikrostruktur PEB U₃Si₂/Al potongan bagian top perbesaran 50 kali

- (b). Mikrostruktur potongan PEB U₃Si₂/AI bagian *top* perbesaran 100 kali
 - (c). Mikrostruktur U₃Si₂ dan matriks Al potongan bagian top perbesaran 250 kali

Hasil mikrostruktur PEB pengamatan U₃Si₂/Al pasca iradiasi potongan bagian *middle* secara utuh ditunjukkan pada Gambar Sama halnya dengan 3.(a). mikrostruktur PEB U₃Si₂/AI potongan bagian top, pada potongan bagian middle diperoleh mikrostruktur PEB U₃Si₂/Al terdiri dari bagian kelongsong AIMg2 dan meat U₃Si₂/AI yang terdistribusi merata disepanjang pelat bahan ditunjukkan pada bakar seperti yang Gambar 3.(b), sedangkan dari Gambar 3.(c) terlihat jelas mikrostruktur partikel U3Si2 terdispersi secara merata dengan matriks Al.

memperlihatkan Gambar 3.(b) adanya dispersan U₃Si₂ yang membentuk cluster yang mengakibatkan distribusi panas kurang homogen. Pada proses pembuatan inti elemen bakar, partikel U₃Si₂ dicampur dan diaduk secara merata dan dikompaksi. Pada proses pencampuran tersebut diharapkan partikel U₃Si₂ tercampur secara merata sehingga partikel U3Si2 dikelilingi oleh matriks Al. Matriks Al dalam hal ini selain berfungsi sebagai pengungkung juga sebagai penghantar panas.

Gambar 3. (a). Mikrostruktur PEB U₃Si₂/AI potongan bagian *middle* perbesaran 50 kali
(b). Mikrostruktur potongan PEB U₃Si₂/AI bagian *middle* perbesaran 100 kali
(c). Mikrostruktur U₃Si₂ dan matriks AI potongan bagian *middle* perbesaran 250 kali

Hasil pengamatan mikrostruktur PEB U₃Si₂/Al pasca iradiasi potongan bagian *bottom* secara utuh ditunjukkan pada Gambar 4. Pada bagian tepi sebelah kiri, memiliki ukuran tidak rata dikarenakan deformasi akibat pemotongan. Pemotongan pada sampel PEB dilakukan dengan teknik *shear cutting* sehingga menghasilkan deformasi pada sampel terutama pada bagian tepi

Gambar 4. (a). Mikrostruktur PEB U₃Si₂/Al potongan bagian *bottom* perbesaran 50 kali

- (b). Mikrostruktur potongan PEB U₃Si₂/AI bagian bottom perbesaran 100 kali
- (c). Mikrostruktur U₃Si₂ dan matriks AI potongan bagian bottom perbesaran 250 kali

Gambar 2; 3 dan 4 diketahui bahwa pengamatan mikrostruktur PEB U₃Si₂/AI pasca iradiasi belum menunjukkan hasil yang baik karena hanya dapat mengamati topografi U₃Si₂ yang tersebar di dalam matriks AI disepanjang PEB. Pengaruh yang menyebabkan iradiasi terjadinya interaksi antara kelongsong AIMg2 dengan meat bahan bakar U₃Si₂/Al, interaksi antara U₃Si₂ dengan matriks Al yang menyebabkan adanya bubble dan void interface celah antara kelongsong AlMg2 dengan meat U₃Si₂/AI belum dapat dianalisis. Hal ini disebabkan pengamatan struktur mikro menggunakan mikroskop optik di dalam hotcell 107 maksimal hanya dengan perbesaran 200 kali, sehingga fenomena diatas belum bisa dianalisis. Salah satu kelemahan dari mikroskop optik adalah daya resolusi yang kecil sehingga gelembung gas dengan ukuran kecil tidak terlihat jelas.

Hasil pengamatan mikrostruktur PEB U₃Si₂/Al pasca iradiasi tersebut juga didukung oleh hasil analisis mikrostruktur PEB U₃Si₂/Al pra iradiasi menggunakan mikroskop optik dan SEM dengan perbesaran 200 kali ditunjukkan pada Gambar 5 dan 6. Mikrostruktur PEB U₃Si₂/AI pra iradiasi yang terdiri dari kelongsong AIMg2, U₃Si₂ dan matriks AI dianalisis menggunakan mikroskop optik diperoleh seperti ditunjukkan hasil yang pada Gambar 5, sedangkan analisis mikrostruktur menggunakan SEM yang dilakukan oleh peneliti lain ditunjukkan pada Gambar 6.

dibandingkan Apabila antara mikrostruktur PEB U₃Si₂/AI pra iradiasi pada Gambar 5.(a) dengan mikrostruktur PEB U₃Si₂/Al pasca iradiasi pada Gambar 2.(a), 3.(a) dan 4.(a) diperoleh hasil yang sama yaitu morfologi dispersan U₃Si₂ tidak banyak perubahan. Demikian pula dengan mikrostruktur meat U₃Si₂/Al pra iradiasi yang ditunjukkan pada Gambar 5.(b) dan Gambar 6 dengan mikrostruktur meat U₃Si₂/Al pasca iradiasi diperoleh bahwa kedua PEB U₃Si₂/Al pra iradiasi maupun pasca iradiasi mempunyai mikrostruktur yang hampir sama seperti yang terlihat pada Gambar 2.(b), 3.(b) dan 4.(b).

Gambar 5. (a). Mikrostruktur PEB U₃Si₂/Al pra iradiasi dengan mikroskop optik (b). Mikrostruktur *meat* U₃Si₂/Al pra iradiasi dengan mikroskop optik

Gambar 7. Mikrostruktur *meat* U₃Si₂/Al pra iradiasi menggunakan SEM[6]

Secara keseluruhan kualitas gambar mikrostruktur PEB U₃Si₂/AI pasca iradiasi yang diperoleh sangat baik dan fokus. Preparasi metalografi juga sudah baik yang ditunjukkan dengan permukaan sampel yang bebas goresan dan sedikit kontaminan. Akan tetapi mikrostruktur untuk mengetahui perilaku bahan bakar akibat iradiasi seperti gas bubble, porositas, reaksi antar muka belum dapat diamati dengan baik. Hal ini disebabkan karena keterbatasan fasilitas hotcell untuk pengamatan mikrostruktur yaitu menggunakan mikroskop optik dengan perbesaran maksimal 200 kali dan memiliki resolusi kecil sehingga fitur seperti gas bubble dan senyawa antar muka tidak teramati dengan jelas. Namun, mikrostruktur PEB maupun meat U₃Si₂/Al pasca iradiasi dengan burn up 56% dibandingkan dengan hasil penelitian yang dilakukan oleh G. Ruggirello, et.al[9]. Hasil analisis mikrostruktur oleh G. Ruggirello, et.al diperoleh mikrostruktur bahan bakar U₃Si₂

yang menunjukkan adanya *interaction layer* dengan ketebalan sekitar 1,5 µm dan pembentukan *small gas bubble* dengan dimensi 0,1–0,3 µm seperti pada Gambar 7 dan 8. Ketebalan *interaction layer* diamati dengan mikroskop optik sedangkan gas *bubble* diamati dengan SEM.

Gambar 7. Interaction layer pada tampilan mikrostruktur U₃Si₂/Al

Gambar 8. Gas bubbles pada tampilan mikrostruktur U₃Si₂/Al

b) Analisis ketebalan kelongsong AIMg2

Penentuan ketebalan kelongsong AlMg2 dilakukan dengan metode pengamatan mikrostruktur PEB U₃Si₂/Al pasca iradiasi bagian potongan *top, middle* dan *bottom* seperti ditunjukkan pada Gambar 9, 10 dan 11.

Gambar 9. Ketebalan Kelongsong AlMg2 bagian *top.*

Gambar 10. Ketebalan Kelongsong AlMg2 bagian *middle.*

Gambar 11. Ketebalan Kelongsong AlMg2 bagian *bottom.*

Gambar 9, 10 dan 11 menunjukkan keseluruhan penampang lintang sampel PEB U₃Si₂/Al yang terdiri dari kelongsong AlMg2 dan *meat* U₃Si₂/Al. Batas antara kelongsong AlMg2 dengan *meat* U₃Si₂/Al masih relatif merata. Hasil pengukuran ketebalan kelongsong AlMg2 pada posisi *top, middle* dan *bottom* dituangkan pada Tabel 1.

Tabel 1. Ketebalan kelongsong PEB U₃Si2/Al densitas 2,96 gU/cm³

Posisi	Ketebalan	Ketebalan
Sampel	minimum,	maksimum,
PEB U ₃ Si ₂ /Al	(mm)	(mm)
Тор	0,368	0,399
Middle	0,374	0,404
Bottom	0,322	0,397

Ketebalan kelongsong rata-rata pada posisi *top* diperoleh sebesar 0,375 mm dengan ketebalan maksimum sebesar 0,399 dan ketebalan minimum sebesar 0,368 mm. Pada posisi *middle* mempunyai ketebalan kelongsong AIMg2 rata-rata 0,385 mm dengan ketebalan minimum sebesar 0,374 mm dan ketebalan maksimum sebesar 0,404 mm. Sementara itu, kelongsong AIMg2 pada posisi *bottom* mempunyai ketebalan rata-rata sebesar 0,366 mm

p ISSN 0852-4777; e ISSN 2528-0473

dengan ketebalan minimum sebesar 0,322 mm. Persyaratan fabrikasi untuk ketebalan kelongsong bahan bakar harus terpenuhi minimum >0,25 mm. Tabel 1 menunjukkan bahwa ketebalan kelongsong AlMg2 masih memenuhi persyaratan yaitu lebih besar dari 0,25 mm. Hal ini menunjukkan bahwa pengaruh proses iradiasi di dalam reaktor tidak memberikan perubahan ketebalan kelongsong AlMg2 secara signifikan.

SIMPULAN

Proses iradiasi di dalam reaktor mempengaruhi karakter mikrostruktur PEB U₃Si₂/Al. Dari analisis mikrostruktur telah diperoleh morfologi dispersan U₃Si₂ dalam matriks Al. Dispersan U₃Si₂ terdistribusi merata dalam matriks Al dengan ukuran bervariasi dan bentuknya cenderung bersudut. Kelongsong AlMg2 pada posisi middle dan bottom mempunyai top, ketebalan >0,25 mm. Beberapa dispersan U₃Si₂ mengalami aglomerasi sehingga distribusi panas dalam inti elemen bakar kurang merata. Hasil metalografi sampel PEB U₃Si₂/AI densitas 2,96 gU/cm³ dengan burn up 56% didalam hotcell 107 tidak menunjukkan adanya gas bubbles dan reaksi antar muka untuk pembentukan lapisan atau interaction layer. Sementara itu, dari hasil analisis diperoleh ketebalan kelongsong AIMg2 masih memenuhi persyaratan yaitu lebih besar dari 0,25 mm. Hal ini menunjukkan bahwa pengaruh proses iradiasi di dalam reaktor tidak memberikan perubahan ketebalan kelongsong AIMg2 secara signifikan.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada penanggung jawab kegiatan Pengujian Pra Dan Pasca Iradiasi Bahan Bakar Reaktor Riset yang telah membiayai kegiatan ini melalui DIPA 2016. Selain itu, kami juga mengucapkan terima kasih kepada Sdri. Anditania Sari DP, Ely Nurlaely dan Sri Ismarwanti yang telah membantu melaksanakan preparasi metalografi dan pengamatan menggunakan mikroskop optik hingga pembuatan makalah ini selesai. Kami juga mengucapkan banyak terima kasih kepada Kepala Bidang Uji Radiometalurgi (Ir.Sungkono,M.T) atas arahan dan bimbingannya serta seluruh staf BUR yang tidak dapat kami sebutkan satu persatu atas kerjasamanya selama ini.

DAFTAR PUSTAKA

- [1] A. B. Ginting, "Pengujian pra dan pasca iradiasi bahan bakar reaktor riset," *Prosiding Hasil-Hasil Penelitian Bahan Bakar Nuklir Tahun* 2016, Pusat Teknologi Bahan Bakar Nuklir, Serpong.
- [2] S. K. Jung, S. J. Young, D. P. Soon, K. H. Yeong, and S. Kyuseok, "Analysis of high burnup pressurized water reactorfuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup," *Nuclear Engineering Technology*, vol. 47, pp. 924-933, 2015.
- Boybul, Yanlinastuti, D. Anggraini,
 A. Nugroho, R. Kriswarini, dan
 A. B. Ginting, "Analisis kandungan cesium dan uranium dalam bahan bakar U₃Si₂/Al pasca iradiasi," *Jurnal Ilmiah Daur Bahan Bakar Nuklir Urania*, vol.23, no. 2, hal.108–122, 2017.
- [4] D. Anggraini, Boybul, Yanlinastuti, A. Nugroho, R. Kriswarini, dan A. B. Ginting, "Pengaruh pelarut organik pada proses pertukaran anion dalam pemisahan uranium dari larutan U₃Si₂/Al pasca iradiasi", *Jurnal Ilmiah Daur Bahan Bakar Nuklir Urania*, vol. 23, no. 2, hal. 97–106, 2017
- [5] A. Leenaers, E. Koonen, Y. Partoens,
 P. Lemoine and S. Van den Berghe,
 "Post-irradiation examination of AlFeNi cladded U3Si2 fuel plates

irradiated under severe conditions," *Journal of Nuclear Materials,* vol. 375, pp. 243–251, 2008.

- [6] J. Gan, D. D. Kaiser Jr, B. D. Miller, J. F. Jue, A. B. Robinson, J. W. Madden, P.G. Medveddev, and D. M. Wachs, "Microstructure of the irradiated U3Si2/AI silicide dispersion fuel," *Journal of Nuclear Materials*, vol. 419, pp. 97–104, 2011.
- [7] A. B.Ginting, M. K. Ajiriyanto, Supardjo, "Interaksi bahan bakar U₃Si₂-Al dengan kelongsong AIMg2 pada elemen bakar silisida TMU 2,96 gU/cm³," Jurnal Ilmiah Daur Bahan Bakar Nuklir Urania, vol. 21, no.1, hal. 9-18, 2015.
- [8] Suwardi, "Performance prediction of high density nuclear fuel plate containing U-7%Mo/AI," Jurnal Ilmiah Daur Bahan Bakar Nuklir Urania, vol.18, no.3, hal. 163-171, 2012.
- [9] G. Ruggirello, Η. Calabroni, M. Sanchez and G. Hofman, "Post irradiation examination of U₃Si₂-Al fuel element manufactured and irradiated in Argentina," 2002 International Meeting on Reduced Enrichment for Research and Test Reactors, Argentina.
- [10] M. K. Ajiriyanto, Y. Nampira, Junaedi, dan S. Ismarwanti, "Mikrostruktur dan karakteristik mekanik PEB U₃Si₂/AI

TMU 2,96 g/cm3 pasca perlakuan panas suhu 500 °C", *Prosiding Seminar Nasional IX SDM Teknologi Nuklir*, Oktober 2013, Yogyakarta.

- [11] Y. S. Kim, G. L. Hofman, "Interdiffusion in U3Si–AI, U3Si2–AI, and USi–AI dispersion fuels during irradiation," *Journal of Nuclear Materials*, vol. 410, pp. 1–9, 2011.
- [12] Supardjo, H. Nasution, A. Rojak, B. G. Susanto, Boybul, dan E.P. Hastuti, "Percobaan pembuatan pelat elemen bakar (PEB) U₃Si₂-AI densitas uranium 4,8 dan 5,2 g/cm³dengan pengkayaan 19,89% ²³⁵U untuk sampel uji iradiasi," *Prosiding Seminar Nasional Daur Bahan Bakar*, Agustus 2003, Serpong.
- [13] Anonim, "Standar guide for preparation of metallographic specimens," ASTM E3-2001.
- [14] Anonim, "Metallography and microstructure," ASM Handbook, vol.9, 2004.
- [15] Supardjo, Boybul, A. Kadarjono, "Pengaruh fabrikasi pelat elemen U-7Mo/Al bakar dengan variasi densitas uranium terhadap pembentukan pori di dalam meat dan tebal kelongsong," Jurnal Teknologi Bahan Nuklir. vol. 8,no. 2, hal. 67-122, 2012.