Study of Alternative Radiation Material Shielding for Gamma Radiation using Monte Carlo Simulation

Gusti Atika Urfa, Totok Wianto, Tetti Novalina Manik, Amar Vijai Nasrulloh



Lead as the most commonly used material for radiation shielding but possessing toxic properties. This research aims to identify alternative, lead-free, and non-toxic materials for gamma radiation shielding through Monte Carlo simulations. Bismuth Oxide (Bi2O3), Barium Oxide (BaO), Tungsten Trioxide (WO3), Tungsten Dioxide (WO2), and Molybdenum Trioxide (MoO3) were selected as potential substitutes for lead. Pure lead (Pb) and Lead Oxide (PbO) were used for comparison. The simulation were performed using Particle Heavy Ion Tracking System (PHITS) software, with a gamma energy of 662 keV. The result of the simulation shows that the linear attenuation coefficient values for Pb and PbO were 0.902 mm-1 and 0.74 mm-1, respectively. Meanwhile, the simulation results of those simulated materials that are closest to Pb and PbO are Bi2O3 and WO2 with an attenuation coefficient of 0.71 mm-1. This simulation shows that for non-lead materials, BiO2 and WO2 have potential as alternative of non-lead radiation shielding.

Full Text:



1. Supawat B., Homnuan P., Kanthawong N., Semrasa N., Tima S., Kothan S., et al. Different Responses of Normal Cells (Red blood cells) and Cancer Cells (k562 and k562/dox cells) to Low-dose137cs Gamma-rays. Mol. Clin. Oncol. 2021. 14(4):1–7.

2. Benavides E., Bhula A., Gohel A., Lurie A.G., Mallya S.M., Ramesh A., et al. Patient Shielding during Dentomaxillofacial Radiography: Recommendations from the American Academy of Oral and Maxillofacial Radiology. J. Am. Dent. Assoc. 2023. 154(9):826–35.

3. Halliwell E., Couch C., Begum R., Li W., Maqbool M. Increase in Kinear Attenuation Coefficient by Changing Crystal Structure of Materials for Radiation Shielding and Biomedical Devices Safety. Colloids Surfaces A Physicochem. Eng. Asp. 2021. 622(April):126646.

4. Wani A.L., Ara A., Usmani J.A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015. 8(2):55– 64.

5. Eid A., Zawia N. Consequences of Lead Exposure, and It’s Emerging Role as an Epigenetic Modifier in the Aging Brain. Neurotoxicology. 2016. 56(2015):254–61.

6. Hung M.C., Chang P. Increased Lead Concentrations in the Hairs of Radiographers in General Hospitals. Sci. Rep. 2021. 11(1):1– 4.

7. Burns K.M., Shoag J.M., Kahlon S.S., Parsons P.J., Bijur P.E., Taragin B.H., et al. Lead Aprons Are a Lead Exposure Hazard. J. Am. Coll. Radiol. 2017. 14(5):641–7.

8. Shoag J.M., Michael Burns K., Kahlon S.S., Parsons P.J., Bijur P.E., Taragin B.H., et al. Lead Poisoning Risk Assessment of Radiology Workers using Lead Shields. Arch. Environ. Occup. Heal. 2020. 75(1):60–4.

9. AbuAlRoos N.J., Baharul Amin N.A., Zainon R. Conventional and New Lead-free Radiation Shielding Materials for Radiation Protection in Nuclear Medicine: A Review. Radiat. Phys. Chem. 2019. 165(July)

10. Sato T., Iwamoto Y., Hashimoto S., Ogawa T., Furuta T., Abe S. ichiro, et al. Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02. J. Nucl. Sci. Technol. 2018. 55(6):684–90.

11. Akram S. Radiation Exposure Of Medical Imaging - StatPearls - NCBI Bookshelf. 2020.

12. Huda W., Brad Abrahams R. X-ray-based Medical Imaging and Resolution. Am. J. Roentgenol. 2015. 204(4):W393–7.

13. Gurko M.A., Konovalov A.N., Prigarin S.M. Study of Gamma Radiation Transfer through Collimator in Nuclear Medicine Applications. AIP Conf. Proc. 2021. 2351(May)

14. Chaturvedi A., Jain V. Effect of Ionizing Radiation on Human Health. Int. J. Plant Environ. 2019. 5(03):200–5.

15. Potter C.A., Longley S.W., Scott B.R., Lin Y., Wilder J.A., Hutt J.A., et al. Radiobiological Studies Using Gamma and X Rays. SAND2013-0743. 2013.(February)

16. Kepala Badan Pengawas Tenaga Nuklir Republik Indonesia Peraturan Badan Pengawas Tenaga Nuklir Republik Indonesia Nomor 4 Tahun 2020 Tentang Keselamatan Radiasi Pada Penggunaan Pesawat Sinar-X Dalam Radiologi Diagnostik Dan Intervensional. 2020.:1–52.

17. Bjørkås L.W., Blø S., Rekdal M.K., Rusandu A. Quality of Radiation Protection Aprons and Quality Control Routines at Different Diagnostic Imaging Modalities. Radiogr. Open. 2020. 6(1):64–74.

18. Boldyrev M. Lead: Properties, History, and Applications. WikiJournal Sci. 2018. 1(2):1– 23.

19. Kartikasari Y., Alif M., Fathoni N., Indrati R. Uuji Fungsi Alat Pelindung Radiasi (Lead Apron) di Instalasi Radiologi Rumah Sakit Iin Naliska 4). 2018.:374–84.

20. Park H., Paganetti H., Schuemann J., Jia X., Min C.H. Monte Carlo Methods for Device Simulations in Radiation Therapy. Phys. Med. Biol. 2021. 66(18):1–58.

21. Bushong Radiologic Science for Technologists 11th ed. 2016.


  • There are currently no refbacks.

PTKRN Digital Library Mendeley