DETERMINING GAMMA SOURCE IN URANIUM MOLYBDENUM OF FUEL IN G.A SIWABESSY MULTI PURPOSE REACTOR

Dewi Nur Riskiana, Anis Rohanda, R. Farzand Abdullatif, I Wayan Ngarayana

DOI: http://dx.doi.org/10.55981/tdm.2023.6799

Abstract


 Nuclear fission reactions produce a lot of radionuclides that release energy, one of which is in the form of gamma radiation. Gamma radiation is produced by various types of radionuclides, and nuclear reactor fuel will produce different values of gamma intensity. Uranium Molybdenum (U7Mo-Al) is the type of nuclear fuel for future research reactors that possesses many advantages. For the application of molybdenum-based fuel, it is necessary to determine the resulting gamma radiation. The purpose is to determine the gamma radiation produced from molybdenum-based fuel with various densities. This study begins with the determination of the mass composition of the reactor component, calculations with ORIGEN2.1, and data output analysis. The U7Mo-Al density was varied, namely 2.96 gU/cm3, 3.85 gU/cm3, 4.44 gU/cm3, 5.43 gU/cm3, 6.91 gU/cm3, and 8.29 gU/cm3. The gamma radiation yield of U7Mo-Al is lower than that of uranium silicide (U3Si2) with the same density of 2.96 gU/cm3. The result will add to the justification for the superiority of U7Mo-Al compared to U3Si2/Al. For U7Mo-Al with densities of 3.85 gU/cm3, 4.44 gU/cm3, 5.43 gU/cm3, 6.91 gU/cm3, and 8.29 gU/cm3, the one that produced the lowest gamma radiation intensity is 3.85 gU/cm3 while the highest is 8.29 gU/cm3. This explains that the intensity of the gamma radiation produced is directly proportional to the fuel density. The low intensity of gamma radiation in molybdenum-based fuel can be used as a suggestion in shielding design to ensure the operational safety of reactors.

 

 


Full Text:

PDF

References


  1. A. Rohanda, Penentuan Decay Gamma Reaktor HTGR 10 MWth. Sigma Epsil. 2016. 20:73–78.
  2. A. Rohanda, Ardani: Determination of Gamma Source Intensity in Uranium Molybdenum. Sigma Epsil. 2014. 16:107–117.
  3. S. Hong, Y. W. Yang, H. S. Xu, H. Y. Meng, L. Zhang, Z. Q. Liu, Y. C Gao, K. Chen, Application of Origen2.1 in the Decay Photon Spectrum Calculation of Spallation Products. Chinese Phys. C. 40, (2016). https://doi.org/10.1088/1674-1137/40/11/ 11 4102.
  4. T. Surbakti, P. Surian, Y. Farisy, M. Imron, Analysis of Safety Reactivity Factor on RSG-GAS Core using New Fuel. J. Phys. Conf. Ser. 1485, (2020). https://doi.org/10.1088/1742-6596/1485/1/ 012007.
  5. A. Ginting, L. P. Hong: Annals of Nuclear Energy Absolute Burnup Measurement of LEU Silicide Fuel Plate Irradiated in the RSG GAS Multipurpose Reactor by Destructive Radiochemical Technique. Ann. Nucl. Energy. 2015. 85:613–620.
  6. S. Pinem, L.P. Hong, T. M. Sembiring, T. Surbakti, Annals of Nuclear Energy Fuel Element Burnup Measurements for the Equilibrium LEU Silicide RSG-GAS ( MPR-30 ) Core under a New Fuel Management Strategy. Ann. Nucl. Energy. 2016. 98: 211–217.
  7. P. Pardi, & P. Purwadi, Evaluasi Keselamatan Operasi Reaktor RSG-GAS Setelah 33 Tahun. SIGMA EPSILON - Buletin Ilmiah Teknologi Keselamatan Reaktor Nuklir. 2020. 24(2):92-97.
  8. T. Surbakti, P. Purwadi, Karakteristik Reaktivitas Teras Kerja RSG-GAS Selama 30 Tahun Beroperasi. J. Penelit. Fis. dan Apl. 2017. 7: 13-19.
  9. F. Akman, M. R. Kaçal, M. I. Sayyed, & H. A. Karataş, Study of Gamma Radiation Attenuation Properties of some Selected Ternary Alloys. Journal of Alloys and Compounds. 2019. 782: 315–322.
  10. A. Rohanda, A. Waris, S. Suprianto, R. Kurniadi, Studi Karakteristik Produk Hasil Fisi Reaktor Riset Berbasis Uranium Silisida pada Berbagai Level Daya. In: Prosiding Seminar Nasional Infrastruktur Energi Nuklir 2018. pp. 287–296. , Yogyakarta (2018)
  11. D. R. McAlister, Gamma Ray Attenuation Properties of Common Shielding Materials [White Paper]. In: University Lane Lisle (2018)
  12. I. Husnayani, P. M. Udiyani, S. Bakhri, G. R. Sunaryo, Kr-85m Activity as Burnup Measurement Indicator in a Pebble Bed Reactor Based on ORIGEN2.1 Computer Simulation. J. Phys. Conf. Ser. 962, (2018). https://doi.org/10.1088/1742-6596/962/1/012005
  13. T. Surbakti, S. Pinem, & T. M. Sembiring,The Feasibility Study to use UMo-AL Fuel at RSG-GAS core. International Journal of Engineering Research And. 2016. V5(11): 262–269.
  14. A. Rohanda, A. Waris, R. Kurniadi, S. Bakhri, P. Pardi, D. Haryanto, Validation and Improvement of Gamma Heating Calculation Methods for the G.A. Siwabessy multipurpose reactor. Nucl. Sci. Tech. 2020. 31:1–10.
  15. N. S. Bahri, J. Zainal, A. M. Jalal Bayar, M. B. Rabir, Gamma and Neutron Source term calculation for irradiated TRIGA Mark II Fuel using ORIGEN2. IOP Conf. Ser. Mater. Sci. Eng. 785, (2020). https://doi.org/10.1088/1757-899X/785/1/012001


Refbacks

  • There are currently no refbacks.


PTKRN Digital Library Mendeley