GAMMA RADIATION EFFECTS ON THE PERFORMANCE OF MONO-CRYSTALLINE SOLAR CELLS

Soni Prayogi, Zainuddin Zainuddin

DOI: http://dx.doi.org/10.55981/tdm.2023.6756

Abstract


In this study, we present examples of solar cells that were subjected to various levels of 60Co gamma radiation. The solar cells we use are mono-crystalline, which has a stable crystal structure and high efficiency compared to polycrystalline. Prior to and during gamma irradiation, the current-voltage characteristics of monocrystalline silicon solar cells under AM1.5 light conditions and their photon spectral currents were examined. The results of the experiment demonstrate that as the dose of gamma radiation increases, solar cell metrics including open circuit voltage (Voc), short circuit current (Isc), and efficiency (η) drop. The photon spectral current demonstrates that as dose gamma is increased, the current decreases at shorter wavelengths  and the defects are primarily produced near the solar cell's surface. Our findings demonstrate the gamma irradiation-induced breakdown of silicon solar cells and the minority carrier lifetime which demonstrates that the minority carrier lifetimes sharply decline with increasing radiation dose.

Full Text:

PDF

References


  1. J. Pastuszak and P. Węgierek, “Photovoltaic Cell Generations and Current Research Directions for Their Development,” Materials, vol. 15, no. 16, p. 5542, Aug. 2022, doi: 10.3390/ma15165542.
  2. P. M. Ushasree and B. Bora, “CHAPTER 1 Silicon Solar Cells,” pp. 1–55, 2019, doi: 10.1039/9781788013512-00001.
  3. M. Cao, T. Zhang, Y. Liu, W. Yu, and M. Ming, “A Performance Degradation Model of Solar Cells in an On-orbit Resource Satellite Based on Peak Currents,” Sol. Energy, vol. 189, pp. 26–34, Sep. 2019, doi: 10.1016/j.solener.2019.07.030.
  4. A. A. El-Amin and M. H. Saad, “Ionizing Radiations (Alpha, Beta, Gamma) Effects on CdS / P-Si Heterojunction Solar Cell for Electrical and Optical Properties,” J. Mater. Sci. Res., vol. 7, no. 1, Art. no. 1, Dec. 2017, doi: 10.5539/jmsr.v7n1p20.
  5. M. Aghaei et al., “Review of Degradation and Failure Phenomena in Photovoltaic Modules,” Renew. Sustain. Energy Rev., vol. 159, p. 112160, May 2022, doi: 10.1016/j.rser.2022.112160.
  6. S. Prayogi, Y. Cahyono, I. Iqballudin, M. Stchakovsky, and D. Darminto, “The Effect of Adding an Active Layer to the Structure of a-Si: H Solar Cells on the Efficiency using RF-PECVD,” J. Mater. Sci. Mater. Electron., vol. 32, no. 6, pp. 7609–7618, Mar. 2021, doi: 10.1007/s10854-021-05477-6.
  7. S. Strohmaier and G. Zwierzchowski, “Comparison of 60Co and 192Ir Sources in HDR Brachytherapy,” J. Contemp. Brachytherapy, vol. 3, no. 4, pp. 199–208, Dec. 2011, doi: 10.5114/jcb.2011.26471.
  8. S. Yadav, O. P. Singh, S. Choudhary, D. K. Saroj, V. Yogi, and B. Goswami, “Estimation and Comparison of Integral Dose to Target and Organs at Risk in Three-dimensional Computed Tomography Image-based Treatment Planning of Carcinoma Uterine Cervix with Two High-Dose-rate Brachytherapy Sources: 60: Co and: 192: Ir,” J. Cancer Res. Ther., vol. 17, no. 1, p. 191, Mar. 2021, doi: 10.4103/jcrt.JCRT_199_19.
  9. L. Vásárhelyi, Z. Kónya, Á. Kukovecz, and R. Vajtai, “Microcomputed Tomography–based Characterization of Advanced Materials: a review,” Mater. Today Adv., vol. 8, p. 100084, Dec. 2020, doi: 10.1016/j.mtadv.2020.100084.
  10. L. Marques et al., “Neutron and Gamma-Ray Detection System Coupled to a Multirotor for Screening of Shipping Container Cargo,” Sensors, vol. 23, no. 1, p. 329, Dec. 2022, doi: 10.3390/s23010329.
  11. Z. Zhong, X. Wang, X. Yin, J. Tian, and S. Komatsu, “Morphophysiological and Proteomic Responses on Plants of Irradiation with Electromagnetic Waves,” Int. J. Mol. Sci., vol. 22, no. 22, Art. no. 22, Jan. 2021, doi: 10.3390/ijms222212239.
  12. P. Kandlakunta, M. Van Zile, and L. R. Cao, “Silicon Solar Cells for Post-Detonation Monitoring and Gamma-Radiation Effects,” Nucl. Sci. Eng., vol. 196, no. 11, pp. 1383–1396, Nov. 2022, doi: 10.1080/00295639.2022.2091905.
  13. Q. Du et al., “Gamma Radiation Effects in Amorphous Silicon and Silicon Nitride Photonic Devices,” Opt. Lett., vol. 42, no. 3, pp. 587–590, Feb. 2017, doi: 10.1364/OL.42.000587.
  14. E. Costa and F. Muleri, “Gamma and X-Radiation,” in Encyclopedia of Remote Sensing, E. G. Njoku, Ed. New York, NY: Springer, 2014, pp. 219–228. doi: 10.1007/978-0-387-36699-9_49.
  15. S. Prayogi, Y. Cahyono, and D. Darminto, “Electronic Structure Analysis of a-Si: H p-i1-i2-n Solar Cells using Ellipsometry Spectroscopy,” Opt. Quantum Electron., vol. 54, no. 11, p. 732, Sep. 2022, doi: 10.1007/s11082-022-04044-5.
  16. S. Prayogi, Y. Cahyono, and D. Darminto, “Hydrogenated Amorphous Silicon Density of State Analyzed by Dielectric Function Model Derived from Ellipsometric Spectroscopy,” JPSE J. Phys. Sci. Eng., vol. 7, no. 2, Art. no. 2, Oct. 2022.
  17. D. C. Nicholls, M. A. Dopita, R. S. Sutherland, and L. J. Kewley, “Chapter 17 - Electron Kappa Distributions in Astrophysical Nebulae,” in Kappa Distributions, G. Livadiotis, Ed. Elsevier, 2017, pp. 633–655. doi: 10.1016/B978-0-12-804638-8.00017-6.
  18. J. Singh et al., “Optical and Radiation Shielding Features for some Phospho-silicate Glasses,” Optik, vol. 261, p. 169140, Jul. 2022, doi: 10.1016/j.ijleo.2022.16914019.
  19. D. Hamdani, S. Prayogi, Y. Cahyono, G. Yudoyono, and D. Darminto, “The Effects of Dopant Concentration on the Performances of the a-SiOx:H(p)/a-Si:H(i1)/a-Si:H(i2)/µc-Si:H(n) Heterojunction Solar Cell,” Int. J. Renew. Energy Dev., vol. 11, no. 1, pp. 173–181, Feb. 2022, doi: 10.14710/ijred.2022.40193.
  20. N. Khan, E. Kalair, N. Abas, A. R. Kalair, and A. Kalair, “Energy Transition from Molecules to Atoms and Photons,” Eng. Sci. Technol. Int. J., vol. 22, no. 1, pp. 185–214, Feb. 2019, doi: 10.1016/j.jestch.2018.05.002.
  21. D. Hamdani, S. Prayogi, Y. Cahyono, G. Yudoyono, and D. Darminto, “The Influences of the Front Work Function and Intrinsic Bilayer (i1, i2) on p-i-n Based Amorphous Silicon Solar Cell’s Performances: A Numerical Study,” Cogent Eng., vol. 9, no. 1, p. 2110726, Dec. 2022, doi: 10.1080/23311916.2022.2110726.
  22. S. A. Alves dos Santos, J. P. N. Torres, C. A. F. Fernandes, and R. A. Marques Lameirinhas “The Impact of Aging of Solar Cells on the Performance of Photovoltaic Panels,” Energy Convers. Manag. X, vol. 10, p. 100082, Jun. 2021, doi: 10.1016/j.ecmx.2021.100082.
  23. I. P. Susila, A. Alfiansyah, I. Istofa, S. Sukandar, B. Santoso, and S. Suratman, “Development of Mobile Device for Gamma Radiation Measurement Utilizing Lora as the communication means,” J. Teknol. Reakt. Nukl. TRI DASA MEGA, vol. 21, no. 2, Art. no. 2, Jul. 2019, doi: 10.17146/tdm.2019.21.2.5432.
  24. S. Prayogi et al., “Observation of Resonant Exciton and Correlated Plasmon Yielding Correlated Plexciton in Amorphous Silicon with Various Hydrogen Content,” Sci. Rep., vol. 12, no. 1, Art. no. 1, Dec. 2022, doi: 10.1038/s41598-022-24713-5.
  25. S. Prayogi, “Analisis Efisisensi Sel Surya a-Si:H Berdasarkan Penyusun Lapisan Aktif,” J. Rekayasa Bahan Alam Dan Energi Berkelanjutan, vol. 6, no. 2, Art. no. 2, Dec. 2022.
  26. S. Prayogi, Y. Cahyono, and Darminto, “Fabrication of Solar Cells Based on a-Si: H layer of intrinsic double (P-ix-iy-N) with PECVD and Efficiency Analysis,” J. Phys. Conf. Ser., vol. 1951, no. 1, p. 012015, Jun. 2021, doi: 10.1088/1742-6596/1951/1/012015.
  27. S. Prayogi, Y. Cahyono, D. Hamdani, and Darminto, “Effect of Active Layer Thickness on the Performance of Amorphous Hydrogenated Silicon Solar Cells,” Eng. Appl. Sci. Res., vol. 49, no. 2, Art. no. 2, 2022.
  28. A. D. Dhass, Y. Prakash, and K. C. Ramya, “Effect of Temperature on Internal Parameters of Solar Cell,” Mater. Today Proc., vol. 33, pp. 732–735, Jan. 2020, doi: 10.1016/j.matpr.2020.06.079.
  29. A. G. Djafar and Y. Mohamad, “Method to Assess the Potential of Photovoltaic Panel Based on Roof Design,” Int. J. Appl. Power Eng. IJAPE, vol. 11, no. 3, Art. no. 3, Sep. 2022, doi: 10.11591/ijape.v11.i3.pp186-198.
  30. S. Bhattacharya and S. John, “Beyond 30% Conversion Efficiency in Silicon Solar Cells: A Numerical Demonstration,” Sci. Rep., vol. 1, Art. no. 1, Aug. 2019, doi: 10.1038/s41598-019-48981-w.
  31. S. Prayogi, “Studi Struktur Elektronik Sel Surya a-Si: H Lapisan Jamak Menggunakan Spektroskopi Elipsometri,” doctoral, Institut Teknologi Sepuluh Nopember, 2022. Accessed: Dec. 16, 2022. [Online]. Available: https://repository.its.ac.id/94763/
  32. S. Kusama et al., “Order-of-magnitude Enhancement in Photocurrent Generation of Synechocystis sp. PCC 6803 by Outer Membrane Deprivation,” Nat. Commun., vol. 13, no. 1, Art. no. 1, Jun. 2022, doi: 10.1038/s41467-022-30764-z.
  33. Y.-J. Jeon, D.-S. Kim, and Y.-E. Shin, “Study of Characteristics of Solar Cells Through Thermal Shock and High-temperature and High-Humidity Testing,” Int. J. Precis. Eng. Manuf., vol. 15, no. 2, pp. 355–360, Feb. 2014, doi: 10.1007/s12541-014-0345-6.
  34. B. R. Manning, J. P. Ashton, and P. M. Lenahan, “Observation of Electrically Detected Electron Nuclear Double Resonance in Amorphous Hydrogenated Silicon Films,” Appl. Phys. Lett., vol. 118, no. 8, p. 082401, Feb. 2021, doi: 10.1063/5.0041059
  35. S. Abermann, “Non-vacuum Processed Next Generation Thin Film Photovoltaics: Towards Marketable Efficiency and Production of CZTS Based Solar Cells,” Sol. Energy, vol. 94, pp. 37–70, Aug. 2013, doi: 10.1016/j.solener.2013.04.017.


Refbacks

  • There are currently no refbacks.


PTKRN Digital Library Mendeley