ANALYSIS OF THE PPF VALUE DEPENDENCE ON THE FUEL BURNUP

Lily Suparlina, Purwadi Purwadi, Kunihiko Nabeshima

DOI: http://dx.doi.org/10.17146/tdm.2022.24.2.6616

Abstract


The RSG-GAS reactor has been operated in a safe and reliable manner for about 35 years since it commenced in operation in 1987 to serve radioisotopes production, NAA, neutron beam experiments, material irradiation, and reactor physics experimental activities as well as training. PPF value is necessary to determine by calculation because it is impossible to determine by experiment and also has a strong relation to the operation safety. The paper is intended to analyze the PPF values of the RSG-GAS reactor core as a function of burn up. The analysis is using WIMSD-5B/BATAN-3DIFF computer codes calculation. The result shows that the PPF values are significantly different for each burn-up or energy in MWD. The result also shows that the BATAN-3DIFF code accurately determines the PPF values of the RSG-GAS reactor core and supports the safety of reactor operation.

Full Text:

PDF

References


  1. Pinem S., Sembiring T.M., Surbakti T. Core Conversion Design Study of TRIGA Mark 2000 Bandung using MTR Plate Type Fuel Element. Int. J. Nucl. Energy Sci. Technol. 2018. 12(3):222-238.
  2. Surbakti T., Purwadi P. Analysis of Neutronic Safety Parameters of the Multi-Purpose Reactor–Gerrit Augustinus Siwabessy (RSG-GAS) Research Reactor at Serpong. J. Penelit. Fis. dan Apl. 2019. 9(1):78-91.
  3. Liem P.H., Surbakti T., Hartanto D. Kinetics Parameters Evaluation on the First Core of the RSG GAS (MPR-30) using Continuous Energy Monte Carlo Method. Prog. Nucl. Energy. 2018. 109(June):196–203.
  4. Dawahra S., Khattab K., Saba G. Extending the Maximum Operation Time of the MNSR Reactor. Appl. Radiat. Isot. 2016. 115:256-261.
  5. Dawahra S., Khattab K., Saba G. Calculation and Comparison of Xenon and Samarium Reactivities of the HEU, LEU Core in the Low Power Research Reactor. Appl. Radiat. Isot. 2015. 101:27–32.
  6. Surbakti T., Pinem S., Suparlina L. Dynamic Analysis on the Safety Criteria of the Conceptual Core Design in MTR-type Research Reactor. Atom Indonesia. 2018. 44(2):89-97.
  7. Surbakti T., Pinem S., Sembiring T.M., Hamzah A., Nabeshima K. Calculation of Control Rods Reactivity Worth of RSG-GAS First Core using Deterministic and Monte Carlo Methods. Atom Indones. 2019. 45(2):69–79.
  8. Pinem S., Sembiring T.M., Liem P.H. Neutronic and Thermal-hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor. 2016. 42(3):123–128.
  9. Surbakti T., Pinem S., Sembiring T.M., Subekti M., Sunaryo G.R. Preliminary Study for Alternative Conceptual Core Design of the MTR Research Reactor. J. Phys. Conf. Ser. 2018. 962(1)
  10. Hedayat A. Benchmarking Verification of the Control Rod Effects on the MTR Core Parameters using the MTR-PC and MCNP Codes throughout 3D Core Modeling and Rod-drop Experiment. Prog. Nucl. Energy. 2016. 88:183-190.
  11. Liu Z., Smith K., Forget B. Calculation of Multi-group Migration Areas in Deterministic Transport Simulations. Ann. Nucl. Energy. 2020. 140:107-110.
  12. Wang C., Liu L., Liu M., Zhang D., Tian W., Qiu S., et al. Conceptual Design and Analysis of Heat Pipe Cooled Silo Cooling System for the Transportable Fluoride-salt-cooled High-temperature Reactor. Ann. Nucl. Energy. 2017. 109
  13. Pinem S., Liem P.H., Sembiring T.M., Surbakti T. Fuel Element Burnup Measurements for the Equilibrium LEU Silicide RSG GAS (MPR-30) Core under a New Fuel Management Strategy. Ann. Nucl. Energy. 2016. 98
  14. Villarino E.A., Mochi I. Thermal-hydraulic Models for Neutronic and thermaly- hydraulic Feedback in Citvap Code. 2014. 23:23-36.
  15. Surbakti T., Imron M. Fuel Burn-up Calculation for Working Core of the RSG-GAS Research Reactor at Batan Serpong. J. Penelit. Fis. dan Apl. 2017. 7(2):89-101.
  16. Pinem S., Surbakti T., Sembiring T., et al. Optimization of Radioisotope Production at RSG-GAS Reactor using Deterministic Method. Journal Teknologi Indonesia 2016. 1 (2):12-18.
  17. Valtavirta V., Leppänen J., Viitanen T. Coupled Neutronics–fuel Behavior Calculations in Steady State using the Serpent 2 Monte Carlo Code. Ann. Nucl. Energy. 2017. 100


Refbacks

  • There are currently no refbacks.


PTKRN Digital Library Mendeley