R. Andika Putra Dwijayanto, Dedy Prasetyo Hermawan



Molten salt reactor (MSR) is often associated with thorium fuel cycle, thanks to its excellent neutron economy and online reprocessing capability. However, since 233U, the fissile used in pure thorium fuel cycle, is not commercially available, the MSR must be started with other fissile nuclides. Different fissile yields different inherent safety characteristics, and thus must be assessed accordingly. This paper investigates the inherent safety aspects of one fluid MSR (OF-MSR) using various fissile fuel, namely low-enriched uranium (LEU), reactor grade plutonium (RGPu), and reactor grade plutonium + minor actinides (PuMA). The calculation was performed using MCNPX2.6.0 programme with ENDF/B-VII library. Parameters assessed are temperature coefficient of reactivity (TCR) and void coefficient of reactivity (VCR). The result shows that TCR for LEU, RGPu, and PuMA are -3.13 pcm, -2.02 pcm and -1.79 pcm, respectively. Meanwhile, the VCR is negative only for LEU, whilst RGPu and PuMA suffer from positive void reactivity. Therefore, for the OF-MSR design used in this study, LEU is the only safe option as OF-MSR starting fuel.

Keywords: MSR, Temperature coefficient of reactivity, Void coefficient of reactivity, Low enriched uranium, Reactor grade plutonium, Minor actinides

Full Text:



  1. LeBlanc D. Molten salt reactors: A new beginning for an old idea. Nucl. Eng. Des. 2010. 240(6):1644–56.
  2. Serp J., Allibert M., Beneš O., Delpech S., Feynberg O., Ghetta V., et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog. Nucl. Energy. 2014. 77:308–19.
  3. Křepel J., Hombourger B., Fiorina C., Mikityuk K., Rohde U., Kliem S., et al. Fuel cycle advantages and dynamics features of liquid fueled MSR. Ann. Nucl. Energy. 2014. 64:380–97.
  4. Harto A.W. Reaktor Innovative Molten Salt (IMSR) Dengan Sistem Keselamatan Pasif Menyeluruh. Tri Dasa Mega. 2011. 13(1):10–20.
  5. Harto A.W. Nuclide composition analysis of PCMSR fuel using thorium as sustainable fuel and low enrich uranium as starting fuel. ARPN J. Eng. Appl. Sci. 2016. 11(6):3993–4000.
  6. Zou C.Y., Cai X.Z., Jiang D.Z., Yu C.G., Li X.X., Ma Y.W., et al. Optimization of temperature coefficient and breeding ratio for a graphite-moderated molten salt reactor. Nucl. Eng. Des. 2015. 281:114–20.
  7. Harto A.W. Sustainable criticality analysis of PCMSR fuel using thorium as sustainable fuel and low enriched uranium as starting fuel. Int. J. Nucl. Energy Sci. Technol. 2015. 9(3):224–37.
  8. Zou C.Y., Cai C.Z., Yu C.G., Wu J.H., Chen J.G. Transition to thorium fuel cycle for TMSR. Nucl. Eng. Des. 2018. 330:420–8.
  9. Waris A., Aji I.K., Pramuditya S., Novitrian, Permana S., Su’ud Z. Comparative Studies on Plutonium and Minor Actinides Utilization in Small Molten Salt Reactors with Various Powers and Core Sizes. Energy Procedia. 2015. 71:62–8.
  10. Zou C., Zhu G., Yu C., Zou Y., Chen J. Preliminary study on TRUs utilization in a small modular Th-based molten salt reactor (smTMSR). Nucl. Eng. Des. 2018. 339:75–82.
  11. Rokhman S.N., Widiharto A., Fisika J.T., Teknik F., Mada U.G., Grafika J., et al. Performa Neutronik Bahan Bakar LiF-BeF2-ThF4-UF4 Pada Small Mobile-Molten Salt Reactor. Tri Dasa Mega. 2011. 13(3):173–85.
  12. Waris A., Richardina V., Aji I.K., Permana S., Su’Ud Z. Preliminary study on plutonium and minor actinides utilization in thorims-nes minifuji reactor. Energy Convers. Manag. 2013. 72:27–32.
  13. Li G.C., Cong P., Yu C.G., Zou Y., Sun J.Y., Chen J.G., et al. Optimization of Th-U fuel breeding based on a single-fluid double-zone thorium molten salt reactor. Prog. Nucl. Energy. 2018. 108:144–51.
  14. Cui D.Y., Li X.X., Xia S.P., Zhao X.C., Yu C.G., Chen J.G., et al. Possible scenarios for the transition to thorium fuel cycle in molten salt reactor by using enriched uranium. Prog. Nucl. Energy. 2018. 104:75–84.
  15. Imron M.M., Harto A.W., Sihana Analisis Transien Pada Passive Compact Molten Salt Reactor (PCMSR). Tri Dasa Mega. 2010. 12(2):75–92.
  16. Robertson R.C., Briggs R.B., Smith O.L., Bettis E.S. Two-Fluid Molten Salt Breeder Reactor Design Study (Status as of January 1, 1968). 1970.
  17. Harto A.W. Passive Compact Molten Salt Reactor (PCMSR), modular thermal breeder reactor with totally passive safety system. in: AIP Conference Proceedings. 2012. pp. 82–95.
  18. Jaradat S.Q., Alajo A.B. Studies on the liquid fluoride thorium reactor: Comparative neutronics analysis of MCNP6 code with SRAC95 reactor analysis code based on FUJI-U3-(0). Nucl. Eng. Des. 2017. 314:251–5.
  19. Rosenthal M.W., Briggs R.B., Kasten P.R. Molten Salt Reactor Program Semiannual Progress Report. 1970.
  20. Mathieu L., Heuer D., Brissot R., Garzenne C., Le Brun C., Lecarpentier D., et al. The thorium molten salt reactor: Moving on from the MSBR. Prog. Nucl. Energy. 2006. 48(7):664–79.
  21. Zhou J., Chen J., Wu J., Xia S., Zou C. Influence of 7Li enrichment on Th-U fuel breeding performance for molten salt reactors under different neutron spectra. Prog. Nucl. Energy. 2020. 120(February 2019):103213.
  22. Hombourger B., Křepel J., Pautz A. The EQL0D fuel cycle procedure and its application to the transition to equilibrium of selected molten salt reactor designs. Ann. Nucl. Energy. 2020. 144:107504.


  • There are currently no refbacks.

PTKRN Digital Library Mendeley