

Jurnal Teknologi Reaktor Nuklir

Tri Dasa Mega

Journal homepage: Jurnal.batan.go.id/index.php/tridam

A Simulation of Irradiation Calculations on Lutetium-177 Production in RSG-GAS Using U₃Si₂-Al and U₉Mo-Al Fuels

Lena Rosmayani^{1*}, Anis Rohanda², Raden Farzand Abdullatif¹

¹⁾Department of Physics, Faculty of Mathematics and Natural Sciences – Jenderal Soedirman University, Jalan Dr. HR Boenyamin No.708, Purwokerto, Banyumas, Central Java, 53122, Indonesia
²⁾Research Center for Nuclear Reactor Technology, OTRN, BRIN, Kawasan Puspiptek Building No.80 Setu, Tangerang Selatan, 15310, Banten,

²Research Center for Nuclear Reactor Technology, OTRN, BRIN, Kawasan Puspiptek Building No.80 Setu, Tangerang Selatan, 15310, Banten, Indonesia

ARTICLE INFO

Article history:

Received: 23 January 2023 Received in revised form: 10 March 2023 Accepted: 27 March 2023

keywords:

¹⁷⁷Lu Activity RSG-GAS ORIGEN2 Irradiation

ABSTRACT

This research is a simulation of irradiation calculations on the production of the radioisotope Lutetium-177 (177Lu) in the G.A Siwabessy Reactor (RSG-GAS). This study aims to analyze the comparative calculation of ¹⁷⁷Lu activity and its purity. One of the production methods of ¹⁷⁷Lu in RSG-GAS is carried out by irradiating Lu₂O₃ targets. This Lu₂O₃ target irradiation produced the radioisotope ¹⁷⁷Lu along with ^{177m}Lu as an impurity. For Medical treatment using radioisotopes, the minimum activity for ¹⁷⁷Lu is 20 GBq/mg, and the impurity should not exceed 0.1%. Calculations were carried out with thermal neutron flux input at 15 MWt operational power for the RSG-GAS core with U₃Si₂-Al fuel (density 2.96 gU/cc and 3.55 gU/cc) and U₉Mo-Al fuel (density 3.55 gU/cc). Calculations were carried out by simulating 8 days of irradiation using ORIGEN2.1. The results showed that the ¹⁷⁷Lu activity resulting from irradiation of Lu₂O₃ targets at various CIP positions in the U₉Mo-Al reactor core was larger than that of the U₃Si₂-Al core. Until the 30th day. the ¹⁷⁷Lu product resulting from irradiation on the U₃Si₂-Al and U₉Mo-Al cores still meets the minimum value of 20 GBq/mg for treatment needs in nuclear medicine, with the activity value of ¹⁷⁷Lu resulting from irradiation on the U_3Si_2 -Al core ranging from 241-403 GBq/mg, while the activity of irradiated ¹⁷⁷Lu in the U₉Mo-Al core ranges from 335-561 GBq/mg. In addition, until the 30th day of decay, ¹⁷⁷Lu has a percentage value of ^{177m}Lu irradiated in the U₉Mo-Al and U₃Si₂-Al cores of 0.0346% and 0.0344%, respectively. The results are still below the maximum impurity value of 0.1% and thus safe to use as a therapeutic agent.

© 2023 Tri Dasa Mega. All rights reserved.

1. INTRODUCTION

Lutetium-177 (¹⁷⁷Lu) is a radioisotope being developed and tested for treating various types of cancer in clinical trials around the world. The radioisotope ¹⁷⁷Lu is used in nuclear medicine for radiotherapy because of its favorable decay characteristics, such as low beta decay energy of 497 keV (78.6%) and relatively short half-life of 6.71

days. This radioisotope also emits gamma rays with energies of 113 keV (6.4%) and 208 keV (11%), making it suitable for in-vivo local imaging with a gamma camera [1].

In the last decade, related publications on ¹⁷⁷Lu have tripled, and demand for them is expected to grow significantly in the coming years. The availability of ¹⁷⁷Lu is entirely dependent on the availability of nuclear reactors. This may put this ¹⁷⁷Lu radioisotope at risk of shortage in the future.

^{*} Corresponding author

E-mail: <u>lena.rosmayani@mhs.unsoed.ac.id</u> DOI: 10.55981/tdm.2023.6793

The increasing demand for ¹⁷⁷Lu is in line with its increasing application in several radionuclide therapies, especially for neuroendocrine tumors and PSMA ligand prostate cancer [2]. Given the associated with challenges producing the radioisotope ¹⁷⁷Lu, this raises concerns that the availability of ¹⁷⁷Lu as a medical isotope may need to be expanded in the long term. For this reason, it is necessary to develop research related to the production of this ¹⁷⁷Lu radioisotope as one of the factors supporting the availability of ¹⁷⁷Lu in the future.

¹⁷⁷Lu is becoming increasingly popular as a treatment option and is labeled as intensive therapy by major pharmaceuticals. Demand for the ¹⁷⁷Lu is expected to be close to 500,000 Curies by 2025[3]. Currently, ¹⁷⁷Lu production is being developed in Indonesia, one of which is at RSG-GAS. To support the global market demand, a high neutron flux is required to produce this radioisotope (>1×10¹⁴ n.cm⁻ ².s⁻¹). Irradiating a Lu₂O₃ target with a low neutron flux will result in a low specific activity (a low ratio of ¹⁷⁷Lu is a useful fraction of all lutetium isotopes). This could be a limit to the probability of success in therapeutic applications [4].

The G.A Siwabessy (RSG-GAS) reactor is one of the research reactors in Indonesia which is developing the production of the radioisotope ¹⁷⁷Lu. One of the studies related to the production of ¹⁷⁷Lu, carried out by Rohadi (2015) was regarding the type of radioactivity and purity of ¹⁷⁷Lu production in RSG-GAS by irradiation carried out in a pneumatic rabbit system (PRS) with a net flux 5×10^{13} n.s⁻¹.cm⁻² and in Central Irradiation Position (CIP) with a net flux 1.4×10^{14} n.s⁻¹.cm⁻². The results indicate that the production of ¹⁷⁷Lu irradiated for 12 days contained impurity radionuclides ^{177m}Lu, which was less than 0.1% at the end of irradiation, then increased rapidly after irradiation was stopped until it reached 0.1% after 24 days of decay [5].

Radioisomer ^{177m}Lu (T_{1/2}: 160.5 days) was experimentally confirmed as the only relevant longlived radionuclide impurity found in ¹⁷⁷Lu generated by target activation of enriched ¹⁷⁶Lu. Radioisomers ^{177m}Lu are inseparable as it has a much longer halflife than ¹⁷⁷Lu. The longer the storage of ¹⁷⁷Lu, the greater level of contamination ^{177m}Lu in it [6]. The maximum value of radionuclide impurities in treatment using a ¹⁷⁷Lu radioisotope is 0.1% [5].

In its production in the reactor core, the activity of ¹⁷⁷Lu is influenced by several factors, namely the type of target used in the form of natural or enriched lutetium, the neutron flux, and the duration of irradiation. The neutron flux is influenced by several

factors, including the position of the target irradiation and the type of fuel used [7]. Thus, in this study, an analysis of the activity of ¹⁷⁷Lu and its purity was carried out when natural lutetium targets were irradiated in the CIP reactor core with the fuel currently used in RSG-GAS and other fuels that have the potential to be used in the future. The fuel currently used in RSG-GAS is uranium silicide (U_3Si_2-Al) with a density of 2.96 gU/cc, while other fuels that have the potential to be used in the future are U₃Si₂-Al with a density of 3.55 gU/cc and U₉Mo-Al with a density 3.55 gU/cc. Radioactivity analysis was carried out using the ORIGEN2.1 program, and it is expected that from the research, it will be known which fuel is adequate to be used in the production of ¹⁷⁷Lu.

2. THEORY

a. ¹⁷⁷Lu Radioisotope

¹⁷⁷Lu radioisotope can be produced directly by irradiating natural lutetium targets (Lu₂O₃) in the reactor core [8]. Lu₂O₃ (lutetium oxide) contains Lu isotopes ¹⁷⁵Lu and ¹⁷⁶Lu. ¹⁷⁵Lu, when irradiated, will produce ¹⁷⁶Lu, which in turn will produce activation products in the form of ¹⁷⁷Lu when irradiated, as shown in Table 1 [9].

 Table 1. Composition of natural Lutetium to form isotopes

 177Lu

Mass number	Abundance (%)	Core reaction	Radio isotope	Half-life	Cross section (σ)
¹⁷⁵ Lu	97,4% -	¹⁷⁵ Lu(n,γ) ^{176m} Lu	176mLu	3,96 hour	16,7 barn
		¹⁷⁵ Lu(n,γ) ¹⁷⁶ Lu	¹⁷⁶ Lu	3,38×10 ¹⁰ year	6,6 barn
¹⁷⁶ Lu	2,6% -	¹⁷⁶ Lu(n,γ) ^{177m} Lu	^{177m} Lu	160 days	2,8 barn
		¹⁷⁶ Lu(n,γ) ¹⁷⁷ Lu	¹⁷⁷ Lu	6,65 days	2020 barn

At the time of neutron irradiation in the reactor, the activity equation is expressed by the following equation [10]:

$$\mathbf{A} = N_t \phi \sigma \left(1 - e^{-\lambda t} \right) \tag{1}$$

where *A* is the resulting activity (Bq), N_t is the number of target atoms at the *t* (atoms), \emptyset is the flux of neutrons (n.s⁻¹cm⁻²), σ is the cross-section of the nuclear reaction (barn = 10⁻²⁴ cm²), λ is the radioisotope decay constant, and *t* is the irradiation time duration (s).

The radioisotope decay activity equation of ¹⁷⁷Lu and its impurities at post-irradiation is expressed by the following equation [9] :

$$A_t = A_0 e^{-\lambda t} \tag{2}$$

where A_t is the decay activity of the radioisotope at time t (bq) and A_0 is the initial radioisotope activity (bq).

b. ORIGEN2.1

ORIGEN2.1 (Oak Ridge Isotope Generation and Depletion Code Version 2.1) is a widely used computer code for calculating radioactive materials' buildup, decay, and processing. The basis for calculating the inventory of radionuclides formed in the irradiation process in reactors through the ORIGEN2 program based on the first-order linear differential equation for the depletion group and radioactive decay as follows [11] :

$$\frac{dX_{i}}{dt} = \sum_{j=1}^{N} l_{i,j}\lambda_{j}X_{j} - \emptyset \sum_{j=1}^{N} f_{i,j}\sigma_{k}X_{k} - (\lambda_{i} + \emptyset\sigma_{i} + r_{i}).X_{i} + F_{i}$$

; *i* 1,2, ..., *N* (3)

Eq. 3 describes the rate of change in the number of nuclides *i* to the change in Time $\left(\frac{dX_i}{dt}\right)$, which is the calculation of the decay term $\left(\sum_{j=1}^{N} l_{i,j}\lambda_jX_j\right)$ minus the absorption rate with average flux $(\emptyset, \sum_{j=1}^{N} f_{i,j}\sigma_kX_k)$ and the radionuclide displacement term $\left((\lambda_i + \emptyset\sigma_i + r_i).X_i\right)$ and the feed (F_i) which will become a particular radionuclide. X_i is the atomic density of the radionuclide *i*, *N* is the number of radionuclides, l_{ij} is the fraction of radioactive decay by other nuclides *j* leading to species formation *i*, λ_j is the radioactive decay constant, \emptyset is the fraction of the absorption of neutrons by other nuclides leading to species formation *i*, *j*.

3. METHODOLOGY

The research includes four stages, namely, the calculation of the target mass, the creation of ORIGEN2.1 input, the process of running ORIGEN2.1, and data analysis.

a. Calculation of the mass of the target composition

Calculation of the mass of the target composition wass carried out before assembling the ORIGEN2.1 input. Only the target mass and its enrichment were known from the target data used, as shown in Table 2, while the ORIGEN2.1 input data requires mass details of the target composition used. To calculate the mass of Lu, the following equation is used:

$$massa_{Lu} = \frac{Ar_{Lu}}{Mr_{Lu203}} x massa_{Lu203}$$
(4)

Table 2. Lu target data Lu_2O_3					
Mass of Lu ₂ O ₃	0.3 mg				
Enrichment	74% Lu-176				

Based on Eq. 4, the mass of lutetium is 2.6 mg. After that, the masses of 175 Lu and 176 Lu can be determined by entering their respective abundances according to Table 2. Then, the masses of 175 Lu and 176 Lu were obtained at 0.06 mg and 0.2 mg, respectively. Meanwhile, the O element was obtained from the mass of Lu₂O₃ minus the result of calculating the mass of Lu, which is equal to 0.04 mg.

b. Writing program input on ORIGEN2.1

The input data needed to run the ORIGEN2.1 program include the composition and target mass of Lu_2O_3 , thermal neutron flux at the CIP position, and the length of irradiation time. The duration of irradiation to be used is eight days. The input data for the flux value of the CIP irradiation position on the reactor core was differentiated into U_3Si_2 -Al (density 2.96 gU/cc) and U_9 Mo-Al (density 3.55 gU/cc), operated at a power of 15 MWt (shown in Table 3) [12,13]. The input data will then be entered into the listing of ORIGEN2.1 for each fuel.

Fab	le 3.	Thermal	neutron	flux	data in	n different	fuel	cores

Fuel	Density	Density Position in CIP (X 10 ¹⁴ n.cm ⁻² .s ⁻			
	(gU/cc)	D6	D7	E6	E7
U ₃ Si ₂ -Al	2.96	1.75	1.75	1.56	1.56
U9Mo-Al	3.55	2.42	2.42	2.43	2.43

c. Process of the running program

At this stage, confirm that the input file extensions are all.INP, also make sure that all input files from the ORIGEN2.1 program contain Filespecs.dat, Origen2.exe, and Photon.Lib. Runorg.Bat, and Thermal. Lib are also complete. After all inputs and ORIGEN2.1 program packages were complete, code running was done by entering the name of the input file in RUNORG by editing and saving the name of the input file using notepad. Then open the RUNORG file; the ORIGEN2.1 program will download the running input file that has been saved and then an output file with the extension file.OUT will appear, which can be opened using notepad. These steps were performed on all input files in turn.

d. Data analysis

Data analysis was performed using Microsoft Excel. From the ORIGEN2.1 output file, radioactivity data of ¹⁷⁷Lu and ¹⁷⁷mLu were taken.

From the output data, a decay graph of the activity comparison of ¹⁷⁷Lu and ^{177m}Lu was made. Then an analysis of the effect of variations in the neutron flux in the reactor core produced by each fuel at activity ¹⁷⁷Lu and ^{177m}Lu was carried out.

4. RESULTS AND DISCUSSION

The results of ¹⁷⁷Lu activity calculations on variations of the reactor core at the end of irradiation using ORIGEN2.1 are shown in Fig. 1. The graph shows the resulting ¹⁷⁷Lu activity from Lu₂O₃ irradiation targets at various CIP positions on the U₉Mo-Al and U₃Si₂-Al reactor cores. From irradiation carried out for eight days, it was found that the activity of ¹⁷⁷Lu irradiated on the reactor core with U₉Mo-Al fuel is in the range of 560-562 GBq/mg, while the activity of ¹⁷⁷Lu irradiated on the reactor core with U₃Si₂Al fuel is in the range of 383-424 GBq/mg. The irradiation results for the two types

of fuel showed that the production of ¹⁷⁷Lu in both cores met the minimum activity value of ¹⁷⁷Lu for medical purposes, namely 20 GBq/mg. The activity of ¹⁷⁷Lu irradiated on the reactor core with U₉Mo-Al fuel has a more excellent value than the target irradiated on the reactor core with U₃Si₂-Al fuel. This is related to the thermal neutron flux in the reactor core with respective fuels. Although the density of the fuel used by the two fuels is almost the same, the neutron flux in the reactor core with U₉Mo-Al fuel is larger than that of U₃Si₂-Al.

Fig. 2 shows the activity ¹⁷⁷Lu calculated from the average flux of each reactor core from postirradiation to 30 days of decay time. From this figure, it can be seen that activity ¹⁷⁷Lu is decaying as time passes. Until the 30th day of decay, the activity of ¹⁷⁷Lu irradiated in the U₉Mo-Al core is larger than U₃Si₂Al. This is related to the value of the thermal neutron flux in each core of the two fuels.

Fig. 1. Activity ¹⁷⁷Lu at the end of irradiation

Fig. 2. Activity ¹⁷⁷Lu in decay Time

Fig. 2 shows that the activity ¹⁷⁷Lu irradiated in the reactor core of U₉Mo-Al until the 30th day of decay is around 335 GBq/mg, while for U₃Si₂-Al is 241 GBq/mg. This means that up to the 30th day of decay, the ¹⁷⁷Lu product resulting from irradiation in the reactor core with these fuels still meets the requirements for medical needs in nuclear medicine.

As is well known, the production of the radioisotope ¹⁷⁷Lu is accompanied by the formation

of ^{177m}Lu, which is a radioisotope impurity. One of the conditions for a safe radioisotope to be used for medical purposes is that the impurity composition must not exceed 0.1% of the activity of the radioisotope. The results of calculating the activity comparison of ¹⁷⁷Lu and ^{177m}Lu after irradiation are shown in Fig. 3.

Fig. 3. The ratio of ¹⁷⁷Lu and its impurity

Fig. 3 shows that, in general, the percentage of activity of ¹⁷⁷mLu as an impurity of ¹⁷⁷Lu resulting from irradiation in the reactor core with U₉Mo-Al fuel is slightly more significant than the results of

irradiation in the reactor with U_3Si_2 -Al fuel. At the end of the irradiation, the ratio of ¹⁷⁷Lu and ^{177m}Lu of the target irradiated results on the reactor core with U₉Mo-Al fuel was 0.0211%, while in the U₃Si₂-Al reactor core, it was 0.021%. These results indicate that the result of irradiation in the reactor core with these two fuels, the composition of ^{177m}Lu, is still below the maximum value of impurities.

After the irradiation was stopped, the percentage of impurities increased. This is influenced by the decay rate of ¹⁷⁷Lu and ¹⁷⁷mLu. ¹⁷⁷Lu has a shorter half-life than ¹⁷⁷mLu. This causes ¹⁷⁷Lu to decay faster, so the longer the decay time, the higher the percentage of ¹⁷⁷mLu produced. Until the 30th day of decay, the percentage of ¹⁷⁷mLu irradiated in the reactor core with U₉Mo-Al and U₃Si₂-Al fuel was 0.0346% and 0.0344%, respectively. These values are still below the maximum limit for the percentage of impurities of 0.1%. This means that this ¹⁷⁷Lu product is safe to use as a therapeutic agent until the decay time of 30 days.

5. CONCLUSION

The activity of ¹⁷⁷Lu resulting from irradiation of Lu₂O₃ targets at various CIP positions on the U₉Mo-Al reactor core is higher than that of irradiation on the U₃Si₂-Al core. Until the 30th day, the radioisotope product ¹⁷⁷Lu resulting from irradiation on the U₃Si₂-Al and U₉Mo-Al cores still meets the requirements for medical needs in nuclear medicine. At the end of the irradiation until the 30th day of decay, the activity of ¹⁷⁷Lu irradiated in the reactor core with U₃Si₂-Al fuel was around 241-403 GBq/mg, while the activity of ¹⁷⁷Lu irradiated in the reactor core with U₉Mo-Al fuel was around 335-561GBq/mg. In addition, until the 30th day of decay, the ¹⁷⁷Lu products irradiated in the reactor core with these fuels are safe to use as therapeutic agent, with a percentage of ^{177m}Lu of 0.0346% and 0.0344% for U₉Mo-Al and U₃Si₂-Al, respectively. Taking into account the activity of the ¹⁷⁷Lu produced and the percentage of impurities, the irradiation results in the reactor core with U₉Mo-Al fuel are better since they produce more significant ¹⁷⁷Lu activity. Meanwhile, the resulting impurity is similar to the irradiation results in the U₃Si₂-Al reactor core.

ACKNOWLEDGMENT

The author would like to thank the Research Center for Nuclear Reactor Technology (PRTRN), the Nuclear Energy Research Organization (ORTN), the National Research and Innovation Agency (BRIN) for providing the opportunity for the authors to conduct research and the Physics Department of Jenderal Soedirman University for providing support to publish this paper.

AUTHOR CONTRIBUTION

Lena Rosmayani calculated the percentage of ¹⁷⁷Lu production activity with impurities in U₃Si₂-Al and U₉Mo-Al fuel using the ORIGEN2.1 code. Anis Rohanda and R Farzand Abdullatif participated together as reviewers and performed data analysis. Lena Rosmayani, Anis Rohanda, and R Farzand Abdullatifi equally contributed as the main contributors to this paper. All authors read and approved the final version of the manuscript.

REFERENCES

- Dash A, Pillai MR, and Knapp FF Jr., "Production of (177)Lu for Targeted Radionuclide Therapy: Available Options", Nucl Med Mol Imaging, vol.49, no.2, pp.85– 107, 2015, DOI: 10.1007/s13139-014-0315-z.
- Pillai, Ambikalmajan M R, and Furn F Russ Knapp Jr, "Evolving Important Role of Lutetium-177 for Therapeutic Nuclear Medicine", Current radiopharmaceuticals vol.8, no.2, pp 78–85, 2015, DOI: 10.2174/1874471008666150312155959.
- 3. Market Research Reports, "Global Lutetium Market Outlook to 2027", Blue Quark Research & Consulting, 2022.
- Vogel, W.V., van der Marck, S.C. & Versleijen, M.W.J, "Challenges and Future Options for the Production of Lutetium-177. *Eur J Nucl Med Mol Imaging* 48", pp 2329–2335, 2021. DOI: https://doi.org/10.1007/s00259-021-05392-2
- 5. Awaludin R, "Radioaktivitas Jenis dan Kemurnian Radionuklida Lutesium-177 diproduksi Menggunakan Reaktor G.A. Siwabessy", Jurnal Radioisotop dan Radiofarmaka vol.18, no.1,2017.
- Widyaningrum, Triani, et al. "Karakteristik Pemisahan Radiolutesium-177/177mlu dan Radioiterbium-169/175yb pada Kolom Resin Ln-eichrom", Jurnal Sains dan Teknologi Nuklir Indonesia (*Indonesian Journal of Nuclear Science and Technology*) vol.16, no.1, pp. 1-14, 2015.
- Banerjee S., Pillai, M.R.A and Russ Knap F.F, "Lutetium-177 Therapeutic Radiopharmaceuticals: Linking Chemistry, Radiochemistry, and Practical Applications", Chemical reviews vol.115, no.8 pp 2934-2974, 2015, DOI: 10.1021/cr500171e.
- Maiyesni M, Febriana S, Kambali I, and Kurniasih D, "Spectral Comparison of Neutron-Irradiated Natural and Enriched Ytterbium Targets for Lu-177 Production", Atom

Indonesia, vol.45, no.3, pp.133–7, 2019, DOI: 10.17146/aij.2019.930.

- Kuznetsov R.A., Bobrovskaya K.S., and Svetukhin V.V., "Production of Lutetium-177: Process Aspects", Radiochemistry, vol. 61, pp. 381-395, 2019, DOI: 10.1134/S1066362219040015
- 10. Boraas, Matthew, et al, Nuclear Batteries and Radioisotopes. Germany: Springer International Publishing, 2018.
- Husnayani, Ihda, "Calculation of Radionuclide Content Of Nuclear Materials Using Origen2.1 Computer Code," Sigma Epsilon vol.19, no.1, pp.20-25, 2015.
- Rohanda, A., Waris, A., Kurniadi, R. *et al*, "Validation and Improvement of Gamma Heating Calculation Methods for the G.A. Siwabessy Multipurpose Reactor", *NUCL SCI TECH* **31**, 112 (2020). DOI : https://doi.org/10.1007/s41365-020-00824-4
- Surbakti, T., Surian P., Farisy Y., and Imron M., "Analysis of Safety Reactivity Factor on RSG-GAS Core using New Fuel", In *Journal of Physics: Conference Series*, vol. 1485, no. 1, p. 012007. IOP Publishing, 2020.